Investigation of Catechol-O-Methyltransferase and Cannabinoid Receptor 2 gene variants in tobacco use disorder or tobacco use disorder and schizophrenia comorbidity

Objective: The purpose of this study was to investigate whether functional variants of Catechol-O-Methyltransferase (COMT) (rs4680) and Cannabinoid Receptor 2 (CNR2) (rs2501432) genes play a role in tobacco use disorder (TUD) or tobacco use disorder and schizophrenia (TUDSch) comorbidity. Methods: This study consisted of 163 participants with TUD, 60 participants with TUDSch, and 106 gender-, age- and ethnicity-matched non-smoker controls (HNC). While the TUD and TUDSch were diagnosed according to the DSM-5, the severity of TUD was rated according to the Fagerstrom Test for Nicotine Dependence. Genotyping of COMT and CNR2 genes was determined using the polymerase chain reaction-restriction fragment length polymorphism method (PCR-RFLP). Results: Distributions of genotypes and allele frequencies were compared among the groups. Patients with TUDSch had higher frequency of COMT Val/Val genotype compared to the TUD and HNC groups (p=0.001, p=0.034, respecttively). Patients with TUD had higher frequency of Val/Met genotype than TUDSch and HNC groups (p=0.001, p=0.033, respectively). The frequency of the Val allele was higher in TUDSch than the HNC group, whereas the frequency of the Met allele was higher in TUD than in the TUDSch group (p=0.047, p=0.001, respectively). Additionally, patients with TUD had higher frequency of TT CNR2 genotype than the HNC group (p=0.019). Conclusion: While the Val/Val genotype of the COMT gene is associated with an increased risk for TUDSch, the Val/Met genotype is associated with an increased risk for TUD. Additionally, the TT CNR2 genotype was associated with increased risk for TUD in the Turkish population.

Tütün kullanım bozukluğu veya tütün kullanım bozukluğu ve şizofreni komorbiditesinde Katekol-O-Metiltransferaz ve Kannabinoid Reseptör 2 gen varyantlarının incelenmesi

Amaç: Bu çalışmanın amacı, Katekol-O-Metiltransferaz (COMT) (rs4680) ve Kannabinoid Reseptör 2 (CNR2) (rs2501432) genlerinin işlevsel varyantlarının tütün kullanım bozukluğu (TUD) veya tütün kullanım bozukluğu ve şizofreni (TUDSch) komorbiditesinde rol oynayıp oynamadığını araştırmaktır. Yöntem: Bu çalışmanın örneklemini 163 TUD, 60 TUDSch ve 106 cinsiyet, yaş ve etnisite eşleşmeli sigara içmeyen kontrol grubu (HNC) oluşturmuştur. TUD ve TUDSch tanıları DSM-5 tanı ölçütlerine göre konulurken, TUD şiddeti Fagerstrom Nikotin Bağımlılığı Testine göre derecelendirilmiştir. COMT ve CNR2 genlerinin genotiplendirilmesi, polimeraz zincir reaksiyonu ve restriksiyon parça uzunluk polimorfizmi yöntemi kullanılarak belirlenmiştir. Bulgular: Gruplar arasında genotip ve allel frekans dağılımları karşılaştırılmış olup COMT val/val genotipi sıklığı TUDSch hastalarında, TUD ve HNC gruplarına göre daha fazla bulunmuştur (sırayla p=0.001, p=0.034). Val/met genotipi sıklığı, TUD hastalarında, TUDSch ve HNC gruplarına göre daha fazla bulunmuştur (sırayla p=0.001, p=0.033). Val alelinin sıklığı TUDSch hasta grubunda HNC grubuna göre daha fazla saptanmış, met alelinin sıklığı ise TUD hasta grubunda, TUDSch hasta grubuna göre daha fazla bulunmuştur (sırayla p=0.047, p=0.001). Ek olarak, TUD hastalarında TT CNR2 genotipi sıklığı HNC grubuna göre daha fazla saptanmıştır (p=0.019). Sonuç: COMT geninin val/val genotipi TUDSch için artmış bir riskle ilişkilendirilmiş olup, val/met genotipi ise TUD için artmış riskle ilişkilendirilmiştir. Ek olarak, Türk popülasyonunda TT CNR2 genotipi artmış TUD riski ile ilişkili bulunmuştur.

___

1. Quaak M, Van Schayck C, Knaapen A, Van Schooten F. Genetic variation as a predictor of smoking cessation success. A promising preventive and intervention tool for chronic respiratory diseases? Eur Respir J 2009; 33(3):468-480.

2. Tsuang MT, Francis T, Minor K, Thomas A, Stone WS. Genetics of smoking and depression. Hum Genet 2012; 131(6):905-915.

3. Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Agúndez JA. COMT gene and risk for Parkinson’s disease: a systematic review and meta-analysis. Pharmacogenet Genom 2014; 24(7):331-339.

4. Aksoy S, Klener J, Weinshilboum RM. Catechol Omethyltransferase pharmacogenetics: photo affinity labelling and western blot analysis of human liver samples. Pharmacogenetics 1993; 3(2):116-122.

5. Lotta T, Vidgren J, Tilgmann C, Ulmanen I, Melen K, Julkunen I, et al. Kinetics of human soluble and membrane-bound catechol O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry 1995; 34(13):4202-4210.

6. Beuten J, Payne TJ, Ma JZ, Li MD. Significant association of catechol-O-methyltransferase (COMT) haplotypes with nicotine dependence in male and female smokers of two ethnic populations. Neuropsychopharmacology 2006; 31(3): 675-684.

7. Munafo MR, Johnstone EC, Guo B, Murphy MF, Aveyard P. Association of COMT Val108/158Met genotype with smoking cessation. Pharmacogenet Genom 2008; 18(2):121-128.

8. Loughead J, Wileyto E, Valdez J, Sanborn P, Tang K, Strasser A, et al. Effect of abstinence challenge on brain function and cognition in smokers differs by COMT genotype. Mol Psychiatr 2009; 14(8):820-826.

9. Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE, et al. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA 2001; 98(12):6917-6922.

10. Malhotra AK, Kestler LJ, Mazzanti C, Bates JA, Goldberg T, Goldman D. A functional poly-morphism in the COMT gene and performance on a test of prefrontal cognition. Am J Psychiatry 2002; 159(4):652-654.

11. Morisano D, Bacher I, Audrain-McGovern J, George TP. Mechanisms underlying the comorbidity of tobacco use in mental health and addictive disorders. Can J Psychiatry 2009; 54(6):356-367.

12. De la Salle S, Smith D, Choueiry J, Impey D, Philippe T, Dort H, et al. Effects of COMT genotype on sensory gating and its modulation by nicotine: differences in low and high P50 supressors. Neuroscience 2013; 241:147- 156.

13. George TP, Verrico CD, Picciotto MR, Roth RH. Nicotinic modulation of mesoprefrontal dopamine neurons: pharmacologic and neuroanatomic characterization. J Pharmacol Exp Ther 2000; 295(1):58-66.

14. Livingstone PD, Srinivasan J, Kew JN, Dawson LA, Gotti C, Moretti M, et al. α7 and non‐α7 nicotinic acetylcholine receptors modulate dopamine release in vitro and in vivo in the rat prefrontal cortex. Eur J Neurosci 2009; 29(3):539-550.

15. Sacco KA, Termine A, Seyal A, Dudas MM, Vessicchio JC, Krishnan-Sarin S, et al. Effects of cigarette smoking on spatial working memory and attentional deficits in schizophrenia: involvement of nicotinic receptor mechanisms. Arch Gen Psychiatry 2005; 62(6):649-659.

16. George TP, Vessicchio JC, Termine A, Sahady DM, Head CA, Pepper WT, et al. Effects of smoking abstinence on visuospatial working memory function in schizophrenia. Neuropsychopharmacology 2002; 26(1):75-85.

17. Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 1990; 346(6284):561-564.

18. Ortega-Alvaro A, Aracil-Fernández A, García-Gutiérrez MS, Navarrete F, Manzanares J. Deletion of CB 2 cannabinoid receptor induces schizophrenia-related behaviors in mice. Neuropsychopharmacology 2011; 36(7):1489.

19. Ishiguro H, Horiuchi Y, Ishikawa M, Koga M, Imai K, Suzuki Y, et al. Brain cannabinoid CB2 receptor in schizophrenia. Biol Psychiatry 2010; 67(10): 974-982.

20. Navarrete F, Rodríguez-Arias M, Martín-García E, Navarro D, García-Gutiérrez MS, Aguilar MA, et al. Role of CB2 cannabinoid receptors in the rewarding, reinforcing, and physical effects of nicotine. Neuropsychopharmacology 2013; 38(12): 2515-2524.

21. Xi Z-X, Peng X-Q, Li X, Song R, Zhang H-Y, Liu Q-R, et al. Brain cannabinoid CB 2 receptors modulate cocaine's actions in mice. Nat Neurosci 2011; 14(9):1160.

22. Okahisa Y, Kodama M, Takaki M, Inada T, Uchimura N, Yamada M, et al. Association study of two cannabinoid receptor genes, CNR1 and CNR2, with methamphetamine dependence. Curr Neuropharmacol 2011; 9(1): 183-189.

23. Kurnaz S, Yazici AB, Nursal AF, Cetinay Aydin P, Ongel Atar A, Aydin N, et al. CNR2 rs2229579 and COMT Val158Met variants, but not CNR2 rs2501432, IL-17 rs763780 and UCP2 rs659366, contribute to susceptibility to substance use disorder in the Turkish population. Psychiatry and Clinical Psychopharmacology 2019:1-7.

24. Heatherton TF, Kozlowski LT, Frecker RC, Fagerstrom KO. The Fagerström test for nicotine dependence: a revision of the Fagerstrom Tolerance Questionnaire. Br J Addict 1991;86(9):1119-1127.

25. Uysal MA, Kadakal F, Karşidağ Ct, Bayram NG, Uysal O, Yilmaz V. Fagerstrom test for nicotine dependence: reliability in a Turkish sample and factor analysis. Tuberk Toraks 2004; 52(2):115-121.

26. Bozkurt N, Bozkurt Aİ. Nikotin bağımlılığını belirlemede Fagerström Nikotin Bağımlılık Testinin (FBNT) değerlendirilmesi ve nikotin bağımlılığı için yeni bir test oluşturulması. Pamukkale Tıp Derg 2016; 1:45-51.

27. Lachman HM, Papolos DF, Saito T, Yu Y-M, Szumlanski CL, Weinshilboum RM. Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 1996; 6(3): 243-250.

28. Shield A, Thomae B, Eckloff B, Wieben ED, Weinshilboum RM. Human catechol O-methyl-transferase genetic variation: gene resequencing and functional characterization of variant allozymes. Mol Psychiatr 2004; 9(2):151-160.

29. Herman AI, Jatlow PI, Gelernter J, Listman JB, Sofuoglu M. COMT Val158Met modulates subjective responses to intravenous nicotine and cognitive performance in abstinent smokers. Pharmacogenomics J 2013; 13(6):490- 497.

30. Johnstone EC, Elliot KM, David SP, Murphy MF, Walton RT, Munafò MR. Association of COMT Val108/158Met genotype with smoking cessation in a nicotine replacement therapy randomized trial. Cancer Epidemiol Biomarkers Prev 2007; 16(6):1065-1069.

31. Tammimäki AE, Männistö PT. Are genetic variants of COMT associated with addiction? Pharmacogenet Genom 2010; 20(12):717-741.

32. Caldú X, Vendrell P, Bartrés-Faz D, Clemente I, Bargalló N, Jurado MÁ, et al. Impact of the COMT Val108/158 Met and DAT genotypes on prefrontal function in healthy subjects. Neuroimage 2007; 37(4):1437-1444.

33. Tan H-Y, Chen Q, Goldberg TE, Mattay VS, MeyerLindenberg A, Weinberger DR, et al. Catechol-Omethyltransferase Val158Met modulation of prefrontal– parietal–striatal brain systems during arithmetic and temporal transformations in working memory. J Neurosci 2007; 27(49):13393-13401.

34. Brody AL, Mandelkern MA, Olmstead RE, Schei-bal D, Hahn E, Shiraga S, et al. Gene variants of brain dopamine pathways and smoking-induced dopamine release in the ventral caudate/nucleus accumbens. Arch Gen Psychiatry 2006; 63(7): 808-816.

35. Wing VC, Bacher I, Sacco KA, George TP. Neuropsychological performance in patients with schizophrenia and controls as a function of cigarette smoking status. Psychiatry Res 2011; 188(3):320-326.

36. Dolan SL, Sacco KA, Termine A, Seyal AA, Dudas MM, Vessicchio JC, et al. Neuropsychological deficits are associated with smoking cessation treatment failure in patients with schizophrenia. Schizophr Res 2004; 70(2- 3):263-275.

37.Wing VC, Wass CE, Soh DW, George TP. A review of neurobiological vulnerability factors and treatment impli-cations for comorbid tobacco dependence in schizo-phrenia. Ann N Y Acad Sci 2012; 1248(1):89-106.

38. Winterer G. Why do patients with schizophrenia smoke? Curr Opin Psychiatry 2010; 23(2):112-119.

39. Chambers RA. A nicotine challenge to the self-medication hypothesis in a neurodevelopmental animal model of schizophrenia. J Dual Diagn 2009; 5(2):139-148.

40. Colilla S, Lerman C, Shields PG, Jepson C, Rukstalis M, Berlin J, et al. Association of catechol-O-methyltransferase with smoking cessation in two independent studies of women. Pharmacogenet Genom 2005; 15(6):393.

41. David SP, Munafò MR. Genetic variation in the dopamine pathway and smoking cessation. Pharmacogenomics 2008; 9(9):1307-1321.

42. McKinney EF, Walton RT, Yudkin P, Fuller A, Haldar NA, Mant D, et al. Association between polymorphisms in dopamine metabolic enzymes and tobacco consumption in smokers. Pharmacogenet Genom 2000; 10(6):483- 491.

43. Wing VC, Tang Y-L, Sacco KA, Cubells JF, George TP. Effect of COMT Val158Met genotype on nicotine withdrawal-related cognitive dysfunction in smokers with and without schizophrenia. Schizophr Res 2013; 150(2- 3):602.

44. Onaivi ES, Ishiguro H, Gu S, Liu Q-R. CNS effects of CB2 cannabinoid receptors: beyond neuro-immunocannabinoid activity. J Psychopharmacol 2012; 26(1): 92-103.