Deri sanayi arıtma çamurunun kompostlaştırılması sırasındaki biyokimyasal değişiklikler ve oluşan komostun kalitesi

Ülkemizde deri işleme önemli bir ekonomik sektör olmasına karşın, atıklarının bertarafı konusunda halen geçerli bir yöntem bulunamamıştır. Deri sanayi atık çamurları, yüksek miktarlarda azot ve azotça zengin organik materyaller içermektedir. Bu organik maddenin ayrışması sırasında yüksek miktarlarda besin elementinin ortama verilecek olmasının yanında deri atık çamuru, çevre için ciddi bir tehdit oluşturabilecek yüksek miktarlarda krom, fekal orijinli patojenler ve toksik organik bileşikleri de içerebilir. Kompostlama, organik atıkların geri kazanımı için en ekonomik ve çevre dostu bir yaklaşım olarak bilinmektedir. Bu çalışmanın amacı; deri sanayi atık çamurunun kompostlaştırılması sırasında meydana gelen bazı biyokimyasal değişimleri izlemek ve oluşan olgun kompostun tarımsal kullanılabilirliğini ortaya koymaktır. Olgun kompost elde edebilmek amacıyla deri atık çamuru 150 günlük kompostlama işlemine tabi tutulmuştur. Oluşan kompostun elektriksel iletkenliği (EC) 6,16 dS m-1, katyon değişim kapasitesi (KDK) 50,24 me 100 g-1, CO2-oluşumu 1,48 mg CO2-C g-1 gün-1, pH’ sı 8,5 ve C:N oranı 8:1 olarak saptanmıştır. Toplam ağır metal konsantrasyonlarından ise kurşun (Pb) 39,75 mg kg-1, krom (Cr) 1097,5 mg kg-1, kadmiyum (Cd) 2,43 mg kg-1, kobalt (Co) 9,88 mg kg-1 ve nikel (Ni) 23,53 mg kg-1 düzeylerinde tespit edilmiştir. Komposttaki Cr miktarı, “Toprak Kirliliğinin Kontrolü Yönetmeliği” nde belirtilen sınır değere yakın bir konsantrasyona sahip olurken, diğer ağır metaller sınır değerlerin oldukça altında çıkmıştır. Fitotoksik etkinin incelendiği olgun kompostta tere (Lepidium sativum L.) tohumlarının çimlenmesi gerçekleşmemiştir. Kompost oluşum sürecinde incelenen tüm biyolojik parametrelerde azalmanın gerçekleşmesi, kompostun stabil hale geldiğini göstermektedir. Fakat deri sanayi arıtma çamurundan elde edilen kompostun sınır değere yakın Cr içeriği, fitotoksik etkisi, yüksek pH ve EC değerlerinden dolayı tarım alanlarında kullanılmasının sakıncalı olacağı kanısına varılmıştır.

Biochemical changes during composting of tannery sludge and assessment of compost quality

Leather processing is an important economic activity in our country whereas a convenient method about the disposal of its waste has not been found yet. Sludge from leather processing contains large concentrations of inorganic nitrogen (N) and N-rich organic residues. Apart from organic material, which releases valuable nutrients for decomposition, tannery sludge may contain chromium (Cr) and pathogens mainly of fecal origin, and toxic organic components, all of which pose a serious threat to the environment. Composting is recognized as one of the most cost-effective and environmentally sound alternatives for organic waste recycling. The aim of this study was to assess the changes in some biochemical properties of tannery sludge during composting and also to reveal agricultural point of view of the appropriateness of mature compost. Tannery sludge was composted for 150 days to achieve mature compost. The compost was analyzed by an electrolytic conductivity (EC) of 6.16 dS m-1, cation exchange capacity of 50.24 meq 100 g-1, a respiration rate of 1.48 mg CO2-C g-1 compost-C day-1, pH 8.5 and C:N ratio 8:1. Total concentration of lead (Pb) was 39.75 mg kg-1 dry compost, chromium (Cr) was 1097.5 mg kg-1 dry compost, cadmium (Cd) was 2.43 mg kg-1 dry compost, cobalt (Co) was 9.88 mg kg-1 dry compost and nickel (Ni) was 23.53 mg kg-1 dry compost. Cr concentration in mature compost was close to threshold value allowed by Soil Pollution Control Regulation (TKKY), but the concentrations of the other heavy metals were under their threshold values. In this study phytotoxic effect exemined by measuring as cress (Lepidium sativum L.) germination in mature compost and no germination was observed. Decrease all of the studied biological parameters during composting indicates that compost has stabilized. But high Cr content, phytotoxic effect, high pH, and EC levels of tannery sludge compost limit its use in agricultural soils.

___

  • Açıkgöz, N., M. E. Akkaş, A. Monghaddam ve K. Özcan. 1993. TARİST PC ler için istatistik ve kantitatif genetik paketi. Uluslararası Bilgisayar Uygulamaları Semp. 19 Ekim 1993 Konya, s 133.
  • Adediran, J. A., P. N. S. Mnkeni, N. C. Mafu and N. Y. O. Muyima. 2004. Changes in chemical properties and temperature during the composting of tobacco waste with other organic materials and effects of resulting compost on lettuce (lactuca sativa L.) and spinach (Spinacea oleracea L.). Biological Agriculture and Horticulture. 22: 101 – 119.
  • Anonim. 2005. Toprak Kirliliğinin Kontrolü Yönetmeliği. Resmi Gazete: 31.05.2005 ve 25831 sayı.
  • Anonim. 2006. Tekstil, Deri ve Giyim Sanayii Özel İhtisas Komisyonu, Deri ve Deri Ürünleri Alt Komisyonu Raporu. Dokuzuncu Kalkınma Planı (2007–2013). T.C. Kalkınma Bakanlığı Devlet Planlama Teşkilatı Müsteşarlığı. 158 p.
  • Anonymous. 1994. 11466.2 Soil Quality-Extraction of Trace Metals Solubge in Aqua Regia: ISO/Tc 190/SC3. Anonymous. 1995a. Soil Quality-Determination of Cadmium, Chromium, Cobalt, Copper, Lead, Manganese, Nickel And Zinc Flame And Electrotermal Atomic Absorbtion Spectrometric Methods.
  • Anonymous. 1995b. A guide to the biosolids risk assessment for the EPA Part 503 Rule EPA/B32-B-93-005 (Ch.4). United States Environmental Protection Agency Office of Wasterwater Management. Washinton, DC. pp. 83.
  • Anonymous. 2003. Reference Document on Best Available Techniques for the Tanning of Hides and Skins. European Commission: Integrated Pollution Prevention and Control (IPPC). 246 p.
  • Aslan, A., G. Gülümser, and B. Ocak. 2006. Increased chromium tanning efficiency with collagen hydrolysates. Journal of the Society of Leather Technologists and Chemists. 90: 201–204.
  • Barrena, R., F. Vázquez, and A. Sánchez. 2008. Dehydrogenase activity as a method for monitoring the composting process. Bioresource Technology. 99(4): 905 – 908.
  • Benitez, E., R. Nogales, C. Elvira, G. Masciandaro, and B. Ceccanti. 1999. Enzyme activities as indicators of the stabilization of sewage sludges composting with Eisenia foetida. Bioresource Technology. 67: 297–303.
  • Bremner, J. M. 1965. Total nitrojen: macro-kjeldahl method to include nitrate. pp. 1149–1178. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties. Black, C.A. (Ed.). American Society of Agronomy Inc., Madison, Wisconsin-USA.
  • Brown, E. M., M. M. Taylor, and W. N. Marmer. 1996. Production and potential uses of co-products from solid tannery waste. Journal of the American Leather Chemists Association. 10: 270–275.
  • Buljan, B., G. Reich, and J. Ludvik. 1999. Mass balance in leather processing. World Leather. 12: 34–46.
  • Cardoso-Vigueros, L., and E. Ramírez-Camperos. 2006. Tannery wastes and sewage sludge biodegration by composting and vermicomposting process. Ingenieria Hidraulica en Mexico. 21(2): 93–103
  • Cayuela, M. L., C. Mondini, M. A. Sánchez-Monedero, and A. Roig. 2008. Chemical properties and hydrolytic enzyme activities forthe characterisation of twophase olive mill wastes composting. Bioresource Technology. 99: 4255 – 4262.
  • Chackraborty, R. 2004. Optimization of hydrolysis of chrome shavings by enzyme from p. lilacinus. Journal of the American Leather Chemists Association. 99: 103–109.
  • Contreras-Ramos, S. M., D. Alvarez-Bernal, N. Trujillo- Tapia, and L. Dendooven. 2004. Composting of tannery effluent with cow manure and wheat straw. Bioresource Technology. 94: 223–228.
  • Eivazi, F., and M. A. Tabatabai. 1977. Phospahatases in soils. Soil Biology & Biochemistry. 9: 167–172.
  • Epstein, E. 1997. The Science of Composting. Thecnomic Publishing Company, Inc. Lancaster, Basel. 459 p
  • García, C., T. Hernández, F. Costa, B. Ceccanti, and A. Gani. 1993. Hydrolases in the organic matter fractions of sewage sludge: Changes with composting. Bioresource Technology. 45(1): 47 – 52.
  • Goyal, S., S. K. Dhull, and K. K. Kapoor. 2005. Chemical and biological changes during composting of different organic wastes and assessment of compost maturity. Bioresource Technology. 96: 1584 – 1591.
  • Hachicha, S., F. Sallemi, K. Medhioub, R. Hachicha, and E. Ammar. 2008. Quality assessment of composts prepared with olive mill wastewater and agricultural wastes. Waste Management. 28: 2593 – 2603.
  • Hawaman. 2009. Rehber Doküman: Deri Sektörü. T.C. Çevre ve Orman Bakanlığı, LIFE06 TCY/TR/292 ‘HAWAMAN’ Projesi. 26 p.
  • Hoffmann, G., and M. Dedekan. 1965. Eine methode zur kolorimetrischen bestimmung der glucosidase aktivitaet in böden. Z. Pflanzenernaehr Bodenkd. 108: 195–201.
  • Isermeyer, H. 1952. Eine einfache Methode zur Bestimmung der Bodenatmung und der Karbonate im Boden. Zeitschrift für Pflanzenernährung und Bodenkunde. 56: 26–38.
  • Jackson, M. L. 1967. Soil Chemical Analysis. Prentice Hall of India Private Limited, New Delhi.
  • Jäggy, W. 1976. Die Bestimmung der CO2-Bildung als Maß der bodenbiologischen Aktivität. Schweizer Landwirtschaftliche Forschung. 15: 371–380.
  • Kandeler, E., and H. Gerber. 1988. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biology and Fertility of Soils. 6: 68–72.
  • Kayikçioglu, H. H., and N. Okur. 2011. Evolution of enzyme activities during composting of tobacco waste. Waste Management & Research. 29(11): 1124–1133.
  • Keeney, D. R. 1982. Nitrogen availability indices. pp. 711– 733. In Methods of Soil Analysis Part 2: Chemical and Microbiological Properties. Page, A.L., R. Miller and D.R. Kenny. (Eds.). American Society of Agronomy.
  • Kirchmann, H., and E. Witter. 1989. Ammonia volatilization during aerobic and anaerobic manure decomposition. Plant and Soil. 115: 35–41.
  • Mondini, C., F. Fornasier, and T. Sinicco. 2004. Enzymatic activity as a parameter for the characterization of the composting process. Soil Biology & Biochemistry. 36: 1587 – 1594.
  • Rauterberg, E., and F. Kremkus. 1951. Bestimmung von Gesamt Humus und Alkalischen Humusstoffen in Boden. Z. für Pflanzenernaehrung, Düngung und Bodenkunde, Verlag Chemie, GmbH, Weinheim.
  • Ros, M., J. A. Pascual, C. Garcia, M. T. Hernandez, and H. Insam. 2006. Hydrolase activity, microbial biomass and community structure in a long-term compost amended field experiment. Soil Biology & Biochemistry. 38: 3443 – 3452.
  • Shanthi, C., D. C. Shelly, and B. Stennett. 2003. Immobilization of degrative enzyme onto collagen hydrolysate films. Journal of the American Leather Chemists Association. 98: 6–12.
  • Smith, D. C., and J. C. Hughes. 2002. Changes in chemical properties and temperature during the degradation of organic wastes subjected to simple composting protocols suitable for small-scale farming, and quality of the mature compost. The South African Journal of Plant and Soil. 19: 53 – 60.
  • Speir, T. W., and D. J. Ross. 1978. Soil phosphatase and sulphatase. pp. 197 – 250. In Soil Enzymes. Burns, R.G. (Ed.). Academic Pres, New York.
  • Tabatabai, M. A., and J. M. Bremner. 1969. Use of pnitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology & Biochemistry. 1: 301–307.
  • Tabatabai, M. A., and J. M. Bremner. 1970. Arylsulfatase activity of soils. Soil Science Society of America Journal. 34: 225 – 229.
  • Thalmann, A. 1968. Zur methodik der bestimmung der dehydrogenaseaktivitaet im boden mittens triphenyltetrazoliumchlorid (TTC). Landwirtsch Forsch. 21: 249–258.
  • Thompson, W., P. Leege, P. Millner, and M. E. Watson. 2001. Test methods for the examination of composts and composting. The US Composting Council, US Government Printing Office. http:// tmecc.org/tmecc/index.html.
  • Tiquia, S. M. 2002. Evolution of enzyme activities during manure composting. Journal of Applied Microbiology. 92: 764 – 775.
  • Tiquia, S. M. 2005. Microbiological parameters as indicators of compost maturity. Journal of Applied Microbiology. 99: 816 – 828.
  • Wang, P., C. M. Changa, M. E. Watson, W. A. Dick, Y. Chen, and H. A. J. Hoitink. 2004. Maturity indices for composted dairy and pig manures. Soil Biology & Biochemistry. 36: 767 – 776.
  • Witter, E., and J. Lopez-Real. 1988. Nitrogen losses during the composting of sewage sludges, and the effectiveness of clay soil, zeolite, and compost in adsorbing the volatilized ammonia. Biological Wastes. 23: 279–294.
  • Zibilske, L. M. 1998. Composting of organic wastes. pp. 482 – 498. In Principles and Applications of Soil Microbiology. Sylvia, D.M., J.J. Fuhrmann, P.G. Hartel and D.A. Zuberer. (Eds.). Upper Saddle River, NJ. Prentice Hall.
  • Zmora-Nahum, S., O. Markovitch, J. Tarchitzky, and Y. Chen. 2005. Dissolved organic carbon (DOC) as a parameter of compost maturity. Soil Biology & Biochemistry. 37: 2109 – 2116.
  • Zucconi, F., A. Pera, M. Forte, and M. DeBertoldi. 1981. Evaluating toxicity of immature compost. BioCycle. 22: 54–57.
ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi-Cover
  • ISSN: 1300-0225
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1991
  • Yayıncı: Ege Tarımsal Araştırma Enstitüsü