Bazı Gübre ve Fungisitlerin Trichoderma Türlerinin Büyümesine Etkisinin in vitro Koşullarda İncelenmesi

Sürdürülebilir tarım hedefleri doğrultusunda bitki büyümesini destekleyici mikroorganizma özelliğine sahip Trichoderma türleri ile kimyasal yöntemlerin birlikte kullanılması amaçlanmaktadır. Ancak bu hedefe ulaşılabilmesi için kullanılan gübre ve fungisitler ile Trichoderma türlerinin birbirine uyumluluklarının belirlenmesi gerekmektedir. Bu çalışmada, geleneksel tarımda sıklıkla kullanılmakta olan 15-30-15 + TE, 18-18-18 + TE, 16-8-24 + 2MgO + TE ve 16-18-19 + TE gibi inorganik gübrelerin ve 25 g Fludioxonil + 10 g Metalaxyl-M, 360 g/l Hymexazol, %53,8 Bakır hidroksit + Tetrasodium pyrophosphate ve 250 g/l Azoxystrobin gibi fungisitlerin bitki büyümesini teşvik eden mikroorganizma özelliklerine sahip Trichoderma atroviride (n:5), Trichoderma citrinoviride (n:6) ve Trichoderma harzianum (n:2) suşlarının büyümesine etkilerinin in vitro koşullarda incelenmesi amaçlanmıştır. Bu amaçla, gübre ve fungisitlerin 100 L su ile birlikte kullanımı önerilen maksimum dozlarının Trichoderma suşlarının koloni büyümesi ve konidiospor oluşumları üzerine etkisi incelenmiştir. Çalışmada, kullanılan inorganik gübrelerin Trichoderma türlerinin koloni büyümesi üzerinde inhibisyon etkisi olmadığı ancak konidiospor oluşumlarını azalttığı belirlenmiştir. Sonuç olarak, tüm Trichoderma türlerinin NPK türü gübreler ile birlikte kullanımlarının uygun olduğu gösterilmiştir. Fungisitlerin Trichoderma türlerine karşı en yüksek büyüme inhibisyonu oluşturandan en düşük büyüme inhibisyonu oluşturana doğru sıralaması %53,8 Bakır hidroksit + Tetrasodium pyrophosphate, 25 g Fludioxonil + 10 g Metalaxyl-M, 360 g/l Hymexazol ve 250 g/l Azoxystrobin şeklindedir. T. citrinoviride suşları fungisitler ile birlikte kullanıma en uyumlu suşlar olarak belirlenmiştir. Ayrıca, Trichoderma türlerinin fungisitlerden etkilenme derecelerinin farklı olduğu hatta aynı türe ait suşların bile farklı büyüme inhibisyonu gösterebildiği saptanmıştır.

In vitro Investigation of the Effects of Some Fertilizers and Fungicides on the Growth of Trichoderma Species

In line with sustainable agriculture goals, it is aimed to use chemical methods together with Trichoderma species, which has plant growth promoting microorganism properties. However, to achieve this goal, it is necessary to determine the compatibility of the fertilizers and fungicides used with Trichoderma species. In this study, we aimed to examine the effects of inorganic fertilizers like 15-30-15 + TE, 18-18-18 + TE, 16-8-24 + 2MgO + TE, 16-18-19 + TE, and the fungicides like 25 g Fludioxonil + 10 g Metalaxyl-M, 360 g/l Hymexazol, 53,8% Copper hydroxide + Tetrasodium pyrophosphate and 250 g/l Azoxystrobin which are frequently used in traditional agriculture, against the in vitro growth of Trichoderma atroviride (n:5), T. citrinoviride (n:6) and T. harzianum (n:2) which have plant growth promoting microorganism properties. For this purpose, the effects of the recommended maximum doses of fertilizers and fungicides with 100 L water on the colony growth and conidiaspore formation of Trichoderma strains were investigated. In the study, it was determined that the inorganic fertilizers used did not have an inhibition effect on the colony growth of Trichoderma species, but reduced the formation of conidiaspores. As a result, it has been shown that all Trichoderma species are compatible for use with NPK type fertilizers. Fungicides on Trichoderma species from highest to lowest growth inhibition are respectively 53,8% Copper hydroxide + Tetrasodium pyrophosphate, 25 g Fludioxonil + 10 g Metalaxyl-M, 360 g/l Hymexazol and 250 g/l Azoxystrobin. T.citrinoviride strains were determined as the most compatible strains for use with fungicides. In addition, it has been determined that Trichoderma species have different degrees of exposure to fungicides, and even strains belonging to the same species can show different growth inhibition.

___

  • Anonymous, 2009. SPSS Inc. Released 2009. PASW Statistics for Windows, Version 18.0. Chicago: SPSS Inc.
  • Ashwani, T., K. Rajesh, G. Nandini, and P. Shailesh. 2012. Compatibility of Trichoderma viride for selected fungicides and botanicals. International journal of Plant pathology, 3(2), 89-94.
  • Aydın, M. H., ve G. Turhan. 2013. Patateste Rhizoctonia solani’ye karşı Trichoderma türlerinin etkinliği ve bazı fungisitlerle birlikte kullanılması. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi, 23(1), 12-31.
  • Bhandari, S., K. R. Pandey, Y. R. Joshi, and S. K. Lamichhane. 2021. An overview of multifaceted role of Trichoderma spp. for sustainable agriculture. Archives of Agriculture and Environmental Science, 6(1), 72-79.
  • Chaparro, A. P., L. H. Carvajal, and S. Orduz. 2011. Fungicide tolerance of Trichoderma asperelloides and T. harzianum strains. Agricultural sciences, 2(03), 301.
  • De Souza Loureiro, E., J. A. D. Neto, L. G. A. Pessoa, P. M. Dias, D. V. Adão, andL. A. Yokota. 2020. Effect of plant protection chemicals about the fungi Trichoderma harzianum and Purpureocillium lilacinum. Research, Society and Development, 9(6), 141963506.
  • Deepika, S., A. K. Tewari, and R. Dinesh. 2014. The in vitro effect of some commonly used fungicides, insecticides and herbicides for their compatibility with Trichoderma harzianum PBT23. World Applied Sciences Journal, 31(4), 444-448.
  • Dhanya, M. K., K. B. Anjumol, M. Murugan, and K. B. Deepthy. 2016. Compatibility of Trichoderma viride and Pseudomonas fluorescens with plant protection chemicals and fertilizers in cardamom. Journal of Tropical Agriculture, 54(2), 129.
  • Durán, E., M. Y. de Romero, E. Romero, and J. R. Ramallo. 2007. Sensibilidad in vitro de cepas de Trichoderma aisladas de semillas de soja frente al fungicida MAXIM® XL. Boletín Micológico, 22.
  • Gampala, K., and R. Pinnamaneni. 2010. Studies on the compatibility of Trichoderma viride with certain Agro-chemicals. Current World Environment, 5(1), 155.
  • Gezgin, Y., D. M. Gül, S. S. Şenşatar, C. U. Kara, S. Sargın, F. V. Sukan, and R. Eltem. 2019a. Evaluation of Trichoderma atroviride and Trichoderma citrinoviride growth profiles and their potentials as biocontrol agent and biofertilizer. Turkish Journal of Biochemistry, 45(2).
  • Gezgin, Y., G. Guralp, A. B. Barlas, and R. Eltem. 2019b. Molecular identifıcation of Trichoderma spp used as biocontrol agents by dna barcoding. 2nd International Eurasian Mycology Congress, Konya, Türkiye, 4 - 06 Eylül 2019, ss.65
  • Herrmann, L. and D. Lesueur.2013. Challenges of formulation and quality of biofertilizers for successful inoculation, In Applied Microbiology and Biotechnology, Vol. 97, Issue 20, pp. 8859–8873
  • Khattabi, N., B. Ezzahiri, L. Louali, and A. Oihabi. 2001. Effect of fungicides and Trichoderma harzianum on sclerotia of Sclerotium rolfsii. Phytopathologia Mediterranea, 40(2), 143-148.
  • Khirallah, W., N. Mouden, K. Selmaoui, E. Achbani, R. Benkirane, A. O. Touhami, and A. Douira. 2016. Compatibility of Trichoderma spp. with some fungicides under in vitro conditions. International Journal of Recent Scientific Research, 7(2), 9060-9067.
  • Kotan, R. ve E. Tozlu. 2021. Bazı Pestisitlerin Faydalı Bakteriler ve Patojen Bakteriler Üzerine Bakterisidal Etkilerinin Belirlenmesi. Tekirdağ Ziraat Fakültesi Dergisi, 18(2), 197-212.
  • Kumar, N. and S. K. Singh. 2017. Screening of tolerance and compatibility of Trichoderma viride against common fertilizers and fungicides. International Journal of Chemical Studies, 5(4), 1871-1874.
  • Kumar, R., S. K. Singh, S. Yadav, R. Kumar, A. K. Choubey, and A. Kumari. 2018. Compatibility of Trichoderma viride with different fungicide and organic cake. Journal of Pharmacognosy and Phytochemistry, 7(2), 2398-2401.
  • Kumar, T. V., S. S. Veena, S. Karthikeyan, and J. Sreekumar. 2017. Compatibility of Trichoderma asperellum with fungicides, insecticides, inorganic fertilizers and bio-pesticides. Journal of root crops, 43(2), 68-75.
  • Kumhar, K. C., A. Babu, J. Peter, M. Bordoloi, H. Rajbongshi, S. S. Yadav, and P. Dey. 2017. Compatibility of Trichoderma harzianum (KBN-29) with Selected inorganic Fertilizers: An In vitro Study. Int. J. Curr. Microbiol. App. Sci, 6(9), 2572-2578.
  • Küçük, Ç., M. Kıvanç, E. Kınacı, ve G. Kınacı. 2005. Bazı Gübrelerin Trıchoderma harzıanum’un Misel Gelişimi ve Spor Üretimine Etkisi. Selcuk Journal of Agriculture and Food Sciences, 19(35), 60-65.
  • Küçük, Ç., M. Kıvanç, E. Kınacı, ve G. Kınacı. 2009. Trichoderma harzianum İzolatlarının Şeker Panca-rında Kullanılan Bazı Fungisitlere Duyarlılıklarının in vitro'da Araştırılması. Elektronik Mikrobiyoloji Dergisi TR, 7(2), 8-12.
  • Lopes, M. J. D. S., M. B. Dias-Filho, and E. S. C. Gurgel. 2021. Successful plant growth-promoting microbes: inoculation methods and abiotic factors. Frontiers in Sustainable Food Systems, 5, 48.
  • Manjunath, M., A. Singh, A. N. Tripathi, R. Prasanna, A. B. Rai, and B. Singh. 2017. Bioprospecting the fungicides compatible Trichoderma asperellum isolate effective against multiple plant pathogens in vitro. Journal of Environmental Biology, 38(4), 553.
  • Maurya, S., D. Rai, S. Dubey, and R. Kumar-Pal. 2020. Compatibility of Trichoderma harzianum with different fungicides under In vitro. International Journal of Chemical Studies, 8(1): 2946-2949.
  • Nel, B., C. Steinberg, N. Labuschagne, and A. Viljoen. 2007. Evaluation of fungicides and sterilants for potential application in the management of Fusarium wilt of banana. Crop Protection, 26(4), 697-705.
  • Ören, A., K. Özbolat ve M. Dığrak. 2009. Kahramanmaraş yöresinde yaygın olarak kullanılan bazı pestisitlerin toprak mikroorganizmaları üzerine etkisi. KSÜ Doğa Bilimleri Dergisi, 12(1), 23-28.
  • Rajesh, R. W., M. S. Rahul, and N. S. Ambalal. 2016. Trichoderma: A significant fungus for agriculture and environment. African journal of agricultural research, 11(22), 1952-1965.
  • Ranganathswamy, M., A. K. Patibanda, and G. N. Rao. 2013. Evaluation of toxicity of agrochemicals on Trichoderma isolates in vitro. Journal of Mycopathological Research, 51(2), 289-293.
  • Ruocco, M., S. Lanzuise, F. Vinale, R. Marra, D. Turrà,S. L. Woo, and M. Lorito. 2009. Identification of a new biocontrol gene in Trichoderma atroviride: the role of an ABC transporter membrane pump in the interaction with different plant-pathogenic fungi. Molecular plant-microbe interactions, 22(3), 291-301.
  • Sarkar, S., P. Narayanan, A. Divakaran, A. Balamurugan, and R. Premkumar. 2010. The in vitro effect of certain fungicides, insecticides, and biopesticides on mycelial growth in the biocontrol fungus Trichoderma harzianum. Turkish Journal of Biology, 34(4), 399-403.
  • Saxena, D., A. K. Tewari, and D. Rai. 2014. The in vitro effect of some commonly used fungicides, insecticides and herbicides for their compatibility with Trichoderma harzianum PBT23. World Applied Sciences Journal, 31(4), 444-448
  • Shah, M. I., S. Phalisteen, A. Nasier, P. Williams, J. Arif, M. Sajad, and A. S. Shawl. 2010. In vitro study on effect of some fungicides viz., Carbendazim, Mancozeb, conjoint Carbendazim Mancozeb and Sulphur against F. oxysporum. Research Journal of Microbiology, 5(10), 1052-1057.
  • Shashikumar, H. M., S. Koulagi, and S. E. Navyashree. 2019. Compatibility of Trichoderma viride and Trichoderma harzianum with fungicides against soil borne diseases of tomato and cabbage. Int J Curr Microbiol App Sci, 8, 1920-1928.
  • Shylaja, M. and M. S. Rao. 2012. In vitro compatibility studies of Trichoderma harzianum with inorganic fertilizers. Nematologia Mediterranea.
  • Silva, M. A. F. D., K. E. D. Moura, K. E. D. Moura, D. Salomão, and F. R. A. Patricio. 2018. Compatibility of Trichoderma isolates with pesticides used in lettuce crop. Summa Phytopathologica, 44(2), 137-142.
  • Sonavane, P. and V. Venkataravanappa. 2017. Compatibility Studies of Trichoderma harzianum Isolate with fungicides used against soil borne disease in Coorg Mandarin-Pepper-Coffee Plantations, Int.J.Curr. Microbiol. App.Sci. 6(8): 346-354.
  • Sood, M., D. Kapoor, V. Kumar, M. S. Sheteiwy, M. Ramakrishnan, M. Landi, and A. Sharma. 2020. Trichoderma: The “secrets” of a multitalented biocontrol agent. Plants, 9(6), 762.
  • Suseela Bhai, R. and J. Thomas. 2010. Compatibility of Trichoderma harzianum (Ritai.) with fungicides, insecticides and fertilizers. Indian Phytopathology, 63(2), 145-148.
  • Tapwal, A., R. Kumar, N. Gautam, and S. Pandey. 2012. Compatibility of Trichoderma viride for selected fungicides and botanicals. International journal of Plant pathology, 3(2), 89-94.
  • Tripathi, P., P. C. Singh, A. Mishra, P. S. Chauhan, S. Dwivedi, R. T. Bais, and R. D. Tripathi. 2013. Trichoderma: a potential bioremediator for environmental clean up. Clean Technologies and Environmental Policy, 15(4), 541-550.
  • Valarmathi, P., P. S. Kumar, P. Vanaraj, R. Ramalingam, and C. Gopal. 2013. Compatibility of copper hydroxide (Kocide 3000) with biocontrol agents. IOSR-JAVS, 3(6), 28-31.
  • Wu, Q., L. Zhang, H. Xia, C. Yu, K. Dou, Y. Li, and J. Chen. 2017. Omics for understanding synergistic action of validamycin A and Trichoderma asperellum GDFS1009 against maize sheath blight pathogen. Scientific reports, 7(1), 1-11.
  • Wu, Q., M. Ni, G. Wang, Q. Liu, M. Yu, and J. Tang. 2018. Omics for understanding the tolerant mechanism of Trichoderma asperellum TJ01 to organophosphorus pesticide dichlorvos. BMC genomics, 19(1), 1-12.
  • Zandona, R. R., P. C. Pazdiora, J. D. B. Pazini, E. J. Seidel, and L. Z. Ethur. 2019. Chemıcal and bıologıcal seed treatment and theır effect on soybean development and yıeld. Revista Caatinga, 32(2), 559-565.
  • Zin, N. A. and N. A. Badaluddin. 2020. Biological functions of Trichoderma spp. for agriculture applications. Annals of Agricultural Sciences, 65(2), 168-178.
ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi-Cover
  • ISSN: 1300-0225
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1991
  • Yayıncı: Ege Tarımsal Araştırma Enstitüsü
Sayıdaki Diğer Makaleler

Ege Bölgesi Fiğ (Vicia sativa L.) Islah Çalışmalarında Geçmişten Günümüze Gelişmeler

Hüseyin ÖZPINAR, Ergül AY, Hülya OKKAOĞLU, Melek AKÇA PELEN

Menemen Ovası Entisol Topraklarının Verimlilik Durumlarının Belirlenmesi ve Haritalarının Oluşturulması

Mahmut TEPECİK, Fulsen ÖZEN, Mustafa BOLCA, Hüseyin Hüsnü KAYIKÇIOĞLU, Hülya İLBİ, Seda ERDOĞAN BAYRAM

Biçim Zamanlarının Yem Bezelyesinin (Pisum sativum spp. arvense L.) Kuru Madde Verimi ve Kalitesine Etkileri

Hülya OKKAOĞLU, Ergül AY, Ceylan BÜYÜKKİLECİ, Melek AKÇA PELEN, Hüseyin ÖZPINAR

Pamukta (Gossypium hirsutum L.) Farklı Azot Dozlarının Yeşilkurt (Helicoverpa armigera Hubn. Lepidoptera: Noctuidae) Popülasyonu Üzerine Etkilerinin İncelenmesi

Sergül ÇOPUL

Bazı Gübre ve Fungisitlerin Trichoderma Türlerinin Büyümesine Etkisinin in vitro Koşullarda İncelenmesi

Derya MARAL GÜL, Rengin ELTEM

Centaurea ptosimopappa var. elegans Güzel. Türkiye’den, Centaurea L. (Asteraceae) cinsine ait yeni bir taxon. sect. Ptosimopappus’a dair taksonomik notlar ve lektotipifikasyon ile

Yelda GÜZEL

Pseudomonas putida, domates bitkilerinde savunma ile ilgili genlerin ekspresyonunu aktive ederek Fusarium oxysporum f.sp. radicis-lycopersici'ye karşı direnci indüklemesi

Birsen ÇAKIR AYDEMİR, Müge ŞAHİN, Ayşe GÜL, Hatice ÖZAKTAN, Lalehan YOLAGELDİ

Kışlatma Öncesi Farklı Polen Diyetleri ile Beslenen Bal Arısı Kolonilerinin Ekonomik Analizi

Hakan ADANACIOĞLU, Mustafa KÖSOĞLU, Cristina Bianca POCOL, Veysel BAY, Erkan TOPAL

Farm Economic Efficiency Gap Due to Gender Discrimination-Evidence from Usaid Markets II Programme Participating Small-Scale Farmers in Kano State of Nigeria

Mohammed Sanusi SADIQ, Invinder Paul SINGH, Muhammad Makarfi AHMAD, Sarki MAHMOUD

Price Volatility Spillovers Among Major Wheat Markets in the World

Mohammed Sanusi SADIQ, Invinder Paul SINGH, Muhammad Makarfi AHMAD