Heartbeat type classification with optimized feature vectors
Heartbeat type classification with optimized feature vectors
In this study, a feature vector optimization based method has been proposed forclassification of the heartbeat types. Electrocardiogram (ECG) signals of fivedifferent heartbeat type were used for this aim. Firstly, wavelet transform (WT)method were applied on these ECG signals to generate all feature vectors.Optimizing these feature vectors is provided by performing particle swarmoptimization (PSO), genetic search, best first, greedy stepwise and multi objectiveevoluationary algorithms on these vectors. These optimized feature vectors arelater applied to the classifier inputs for performance evaluation. A comprehensiveassessment was presented for the determination of optimized feature vectors forECG signals and best-performing classifier for these optimized feature vectors wasdetermined.
___
- Pan, J., & Tompkins, W. J. (1985). A real-time QRS
detection algorithm. IEEE transactions on
biomedical engineering, (3), 230-236.
- Okada, M. (1979). A digital filter for the ors complex
detection. IEEE Transactions on Biomedical
Engineering, (12), 700-703.
- Afonso, V. X., Tompkins, W. J., Nguyen, T. Q., &
Luo, S. (1999). ECG beat detection using filter
banks. IEEE transactions on biomedical
engineering, 46(2), 192-202.
- Li, C., Zheng, C., & Tai, C. (1995). Detection of
ECG characteristic points using wavelet transforms.
IEEE Transactions on biomedical Engineering,
42(1), 21-28.
- Rekik, S., & Ellouze, N. (2016). QRS detection
combining entropic criterion and wavelet transform.
International Journal of Signal and Imaging Systems
Engineering, 9(4-5), 299-304.
- Rani, R., Chouhan, V. S., & Sinha, H. P. (2015).
Automated detection of qrs complex in ECG signal
using wavelet transform. International Journal of
Computer Science and Network Security (IJCSNS),
15(1), 1.
- Kaur, I., Rajni, R., & Marwaha, A. (2016). ECG
Signal Analysis and Arrhythmia Detection using
Wavelet Transform. Journal of The Institution of
Engineers (India): Series B, 97(4), 499-507.
- Chen, T. H., Zheng, Y., Han, L. Q., Guo, P. Y., &
He, X. Y. (2008). The Sorting Method of ECG
Signals Based on Neural Network. In Bioinformatics
and Biomedical Engineering, 2008. ICBBE 2008.
The 2nd International Conference on (pp. 543-546).
IEEE.
- Dokur, Z., Ölmez, T., Yazgan, E., & Ersoy, O. K.
(1997). Detection of ECG waveforms by neural
networks. Medical engineering & physics, 19(8),
738-741.
- Coast, D. A., Stern, R. M., Cano, G. G., & Briller, S.
A. (1990). An approach to cardiac arrhythmia
analysis using hidden Markov models. IEEE
Transactions on biomedical Engineering, 37(9),
826-836.
- Jain, S., Kumar, A., & Bajaj, V. (2016). Technique
for QRS complex detection using particle swarm
optimisation. IET Science, Measurement &
Technology, 10(6), 626-636.
- Thomas, M., Das, M. K., & Ari, S. (2015).
Automatic ECG arrhythmia classification using dual
tree complex wavelet based features. AEUInternational
Journal of Electronics and
Communications, 69(4), 715-721..
- Inan, O. T., Giovangrandi, L., & Kovacs, G. T.
(2006). Robust neural-network-based classification
of premature ventricular contractions using wavelet
transform and timing interval features. IEEE
Transactions on Biomedical Engineering, 53(12),
2507-2515.
- Sahoo, S., Kanungo, B., Behera, S., & Sabut, S.
(2017). Multiresolution wavelet transform based
feature extraction and ECG classification to detect
cardiac abnormalities. Measurement, 108, 55-66.
- Martis, R. J., Acharya, U. R., & Min, L. C. (2013).
ECG beat classification using PCA, LDA, ICA and
discrete wavelet transform. Biomedical Signal
Processing and Control, 8(5), 437-448.
- Ince, T., Kiranyaz, S., & Gabbouj, M. (2009). A
generic and robust system for automated patientspecific
classification of ECG signals. IEEE
Transactions on Biomedical Engineering, 56(5),
1415-1426.
- Martis, R. J., Acharya, U. R., Mandana, K. M., Ray,
A. K., & Chakraborty, C. (2013). Cardiac decision
making using higher order spectra. Biomedical
Signal Processing and Control, 8(2), 193-203.
- Tadejko, P., & Rakowski, W. (2007). Mathematical
morphology based ECG feature extraction for the
purpose of heartbeat classification. In Computer
Information Systems and Industrial Management
Applications, 6th International Conference on (pp.
322-327). IEEE.
- Kim, J., Shin, H., Lee, Y., & Lee, M. (2007).
Algorithm for classifying arrhythmia using Extreme
Learning Machine and principal component
analysis. In Engineering in Medicine and Biology
Society, EMBS 2007. 29th Annual International
Conference of the IEEE (pp. 3257-3260). IEEE.
- Martis, R. J., Acharya, U. R., Mandana, K. M., Ray,
A. K., & Chakraborty, C. (2012). Application of
principal component analysis to ECG signals for
automated diagnosis of cardiac health. Expert
Systems with Applications, 39(14), 11792-11800.
- Mehta, S. S., & Lingayat, N. S. (2008). Development
of SVM based ECG Pattern Recognition Technique.
IETE Journal of Research, 54(1), 5-11.
- Raman, P., & Ghosh, S. (2016). Classification of
Heart Diseases based on ECG analysis using FCM
and SVM Methods. International Journal of
Engineering Science, 6739.
- Ceylan, R., & Özbay, Y. (2007). Comparison of
FCM, PCA and WT techniques for classification
ECG arrhythmias using artificial neural network.
Expert Systems with Applications, 33(2), 286-295.
- Shadmand, S., & Mashoufi, B. (2016). A new
personalized ECG signal classification algorithm
using block-based neural network and particle
swarm optimization. Biomedical Signal Processing
and Control, 25, 12-23.
- Güler, İ., & Übeylı, E. D. (2005). ECG beat classifier
designed by combined neural network model.
Pattern recognition, 38(2), 199-208.
- Moraglio, A., Di Chio, C., & Poli, R. (2007).
Geometric particle swarm optimisation. In European
conference on genetic programming (pp. 125-136).
Springer, Berlin, Heidelberg.
- Gutlein, M., Frank, E., Hall, M., & Karwath, A.
(2009). Large-scale attribute selection using
wrappers. In Computational Intelligence and Data
Mining, IEEE Symposium on (pp. 332-339). IEEE.
- Goldberg, D. E., & Holland, J. H. (1988). Genetic
algorithms and machine learning. Machine learning,
3(2), 95-99.
- Jiménez, F., Sánchez, G., García, J. M., Sciavicco,
G., & Miralles, L. (2017). Multi-objective
evolutionary feature selection for online sales
forecasting. Neurocomputing, 234, 75-92.
- Breiman, L. (2001). Random forests. Machine
learning, 45(1), 5-32.
- Suykens, J. A., & Vandewalle, J. (1999). Least
squares support vector machine classifiers. Neural
processing letters, 9(3), 293-300.
- Guyon, I., & Elisseeff, A. (2003). An introduction to
variable and feature selection. Journal of machine
learning research, 3(Mar), 1157-1182..
- Martín-Smith, P., Ortega, J., Asensio-Cubero, J.,
Gan, J. Q., & Ortiz, A. (2017). A supervised filter
method for multi-objective feature selection in EEG
classification based on multi-resolution analysis for
BCI. Neurocomputing, 250, 45-56.
- Mark, R. Moody, G. (1997). MIT-BIH Arrhythmia
Database, http://ecg.mit.edu/dbinfo.html