Sinc-Galerkin method for solving hyperbolic partial differential equations

Sinc-Galerkin method for solving hyperbolic partial differential equations

In this work, we consider the hyperbolic equations to determine the approximatesolutions via Sinc-Galerkin Method (SGM). Without any numerical integration,the partial differential equation transformed to an algebraic equationsystem. For the numerical calculations, Maple is used. Several numericalexamples are investigated and the results determined from the method arecompared with the exact solutions. The results are illustrated both in tableand graphically.

___

  • Stenger, F. (1979). A Sinc-Galerkin Method of Solution of Boundary Value Problems. Mathematics of Computation, 33 85-109.
  • Stenger, F. (2000). Summary of Sinc numerical methods. Journal of Computational and Applied Mathematics, 121 379-420.
  • Alonso, N., Bowers, K.L. (2009). An AlternatingDirection Sinc-Galerkin Method for Elliptic Problems. Journal of Complexity, 25, 237–252.
  • Bowers, K.L., Lund, J. (1987). Numerical Solution of Singular Poisson Problems via the Sinc-Galerkin Method. SIAM Journal on Numerical Analysis, 24(1) 36-51.
  • Koonprasert, S. (2003). The Sinc-Galerkin Method for Problems in Oceanography. PhD thesis, Montana State University, Bozeman, Montana.
  • Lewis, D.L., Lund, J., Bowers, K. L. (1987). The Space-Time Sinc-Galerkin Method for Parabolic Problems. International Journal for Numerical Methods in Engineering, 24 1629-1644.
  • Lund, J. (1986). Symmetrization of the Sinc-Galerkin Method for Boundary Value Problems. Mathematics of Computation, 47, 571-588.
  • Lund, J., Bowers, K.L., McArthur, K. M., (1989). Symmetrization of the Sinc-Galerkin Method with Block Techniques for Elliptic Equations. IMA Journal of Numerical Analysis, 9, 29-46.
  • Lund, J., Bowers, K.L. (1992). Sinc Methods for Quadrature and Differential Equations. SIAM: Philadelphia.
  • Lybeck, N.J. (1994). Sinc Domain Decomposition Methods for Elliptic Problems. PhD thesis, Montana State University, Bozeman, Montana.
  • Lybeck, N.J., Bowers, K.L. (1996). Domain Decomposition in Conjunction with Sinc Methods for Poisson’s Equation. Numerical Methods for Partial Differential Equations, 12, 461-487.
  • McArthur, K.M., Bowers, K.L., Lund, J. (1987). Numerical Implementation of the Sinc-Galerkin Method for Second-Order Hyperbolic Equations. Numerical Methods for Partial Differential Equations, 3, 169-185.
  • McArthur, K.M., Bowers, K.L., Lund, J. (1990). The Sinc Method in Multiple Space Dimensions: Model Problems. NumerischeMathematik, 56, 789-816.
  • Morlet, A.C., Lybeck, N.J., Bowers, K.L. (1997). The Schwarz Alternating Sinc Domain Decomposition Method. Applied Numerical Mathematics, 25, 461-483.
  • Morlet, A.C., Lybeck, N.J., Bowers, K.L. (1999). Convergence of the Sinc Overlapping Domain Decomposition Method. Applied Mathematics and Computation, 98, 209-227.
  • Ng, M. (1999). Fast Iterative Methods for Symmetric Sinc-Galerkin Systems. IMA Journal of Numerical Analysis, 19 357-373.
  • Ng, M., Bai, Z. (2003). A Hybrid Preconditioner of Banded Matrix Approximation and AlternatingDirection Implicit Iteration for Symmetric SincGalerkin Linear Systems, Linear Systems, Linear Algebra and its Applications, 366 317-335.
  • Stenger, F. (1981). Numerical Methods Based on Whittaker Cardinal, or Sinc Functions. SIAM Review, 23 165-224.
  • Stenger, F. (1993). Numerical Methods Based on Sinc and Analytic Functions, Springer-Verlag, New York.
  • Whittaker, E.T. (1915). On the Functions which are Represented by the Expansions of the Interpolation Theory. Proceedings of the Royal Society of Edinburg, 35, 181-194.
  • Whittaker, J.M. (1961). Interpolation Function Theory, Cambridge Tracts in Mathematics and Mathematical Physics. No. 33, Cambridge University Press, London.
  • Stenger, F. (1976). Approximations via Whittaker’s Cardinal Function. Journal of Approximation Theory, 17, 222-240.
  • Stenger, F., O’Reilly, M. J. (1998). Computing Solutions to Medical Problems via Sinc Convolution. IEEE Transactions on Automatic Control, 43, 843.
  • Narasimhan, S., Majdalani, J., Stenger, F. (2002). A First Step In Applying The Sinc Collocation Method To The Nonlinear Navier Stokes Equations. Numerical Heat Transfer,41, 447-462.
  • Mueller, J.L., Shores, T.S. (2004). A New SincGalerkin Method for Convection-Diffusion Equations with Mixed Boundary Conditions. Computers and Mathematics with Applications, 47, 803-822.
  • El-Gamel, M., Behiry, S.H., Hashish, H. (2003). Numerical method for the solution of special nonlinear fourth-order boundary value problems. Applied Mathematics and Computation, 145, 717–734.
  • Alkan, S., Secer, A. (2015). Solving nonlinear boundary value problems by the Galerkin method with sinc functions. Open Physics, 13, 1, 389-394.
  • Zamani, N.G. (1987). A finite element based collocation method for eigenvalue calculations. Journal of the Franklin Institute, 324, 205-217.
  • Alkan, S., Secer, A. (2015). Application of SincGalerkin method for solving space-fractional boundary value problems. Mathematical Problems in Engineering, 2015, 1-10.
  • Lybeck, N.J., Bowers, K.L. (1996). Sinc methods for domain decomposition. Applied Mathematics and Computation, 75, 4-13.
  • Secer, A., Alkan, S., Akinlar, M.A., Bayram, M. (2013). Sinc-Galerkin method for approximate solutions of fractional order boundary value problems. Boundary Value Problems, 2013, 1, 281.
  • Secer, A., Kurulay M., Bayram, M., Akinlar, M.A. (2013). An efficient computer application of the sincGalerkin approximation for nonlinear boundary value problems, Boundary Value Problems, 2012, 1, 117.