Reproducing kernel Hilbert space method for solutions of a coefficient inverse problem for the kinetic equation
Reproducing kernel Hilbert space method for solutions of a coefficient inverse problem for the kinetic equation
On the basis of a reproducing kernel Hilbert space, reproducing kernel functionsfor solving the coefficient inverse problem for the kinetic equation aregiven in this paper. Reproducing kernel functions found in the reproducingkernel Hilbert space imply that they can be considered for solving such inverseproblems. We obtain approximate solutions by reproducing kernel functions.We show our results by a table. We prove the efficiency of the reproducingkernel Hilbert space method for solutions of a coefficient inverse problem forthe kinetic equation.
___
- Golgeleyen, F., and Amirov, A. (2011). On the approximate
solution of a coefficient inverse problem for
the kinetic equation. Math. Commun. 16, 283-298.
- Perthame, B. (2014). Mathematical tools for kinetic
equations, Bull. Amer. Math. Soc. 41, 205-244.
- Zaremba, S. (1907). L’equation biharmonique et une
classe remarquable de fonctions fondamentales harmoniques.
Bulletin International l’Academia des Sciences
de Cracovie, pages 147-196.
- Zaremba, S. (1908). Sur le calcul numerique des
fonctions demandees dan le probleme de dirichlet et
le probleme hydrodynamique. Bulletin International
l’Academia des Sciences de Cracovie, 125-195.
- Aronszajn, N. (1950). Theory of reproducing kernels.
Trans. Amer. Math. Soc., 68, 337-404.
- Bergman, S. (1950). The kernel function and conformal
mapping. American Mathematical Society, New
York.
- Mohammadi, M., Mokhtari, R., and Isfahani, F.T.
(2014). Solving an inverse problem for a parabolic
equation with a nonlocal boundary condition in the
reproducing kernel space. Iranian Journal of Numerical
Analysis and Optimization 4(1), 57-76.
- Cui, M., Lin, Y., and Yang, L. (2007). A new method
of solving the coefficient inverse problem. Science in
China Series A: Mathematics Apr., 50(4), 561-572.
- Xu, M.Q., and Lin, Y. (2016). Simplified reproducing
kernel method for fractional differential equations
with delay. Applied Mathematics Letters, 52, 156-161.
- Tang, Z.Q. and Geng, F.Z. (2016). Fitted reproducing
kernel method for singularly perturbed delay initial
value problems. Applied Mathematics and Computation,
284, 169-174.
- Fardi, M., Ghaziani, R.K., and Ghasemi, M. (2016).
The reproducing kernel method for some variational
problems depending on indefinite integrals. Mathematical
Modelling and Analysis, 21(3), 412-429.
- Wahba, G. (1974). Regression design for some equivalence
classes of kernels. The Annals of Statistics 2(5),
925-934.
- Nashed, M. Z., and Wahba, G. (1974). Regularization
and approximation of linear operator equations
in reproducing kernel spaces. Bulltetin of the American
Mathematical Society,80(6), 1213-1218.
- Al e’damat, A.H. (2015). Analytical-numerical
method for solving a class of two-point boundary
value problems. International Journal of Mathematical
Analysis 9(40), 1987-2002.
- Inc, M., and Akgül, A. (2014). Approximate solutions
for MHD squeezing fluid flow by a novel method.
Boundary Value Problems, 2014:18.
- Inc, M., Akgül, A., and Kilicman, A. (2013). Numerical
solutions of the second-order one-dimensional telegraph
equation based on reproducing kernel hilbert
space method. Abstract and Applied Analysis, Article
ID 768963, 13 pages.
- Akgül, A., and Kilicman, A. (2015). Solving delay differential
equations by an accurate method with interpolation.
Abstract and Applied Analysis, Article ID
676939, 7 pages.
- Akgül, A. (2015). New reproducing kernel functions.
Mathematical Problems in Engineering, Article ID
158134, 10 pages.
- Inc., M., and Akgül, A. (2014). Numerical solution
of seventh-order boundary value problems by a novel
method. Abstract and Applied Analysis, Article ID
745287, 9 pages.
- Boutarfa, B., Akgül, A., and Inc, M. (2017). New
approach for the Fornberg-Whitham type equations.
Journal of Computational and Applied Mathematics,
312, 13-26.
- Sakar, M.G., Akgül, A., and Baleanu, D. (2017). On
solutions of fractional Riccati differential equations.
Advances in Difference Equations. 2017:39.
- Akgül, A., and Grow, D. Existence of solutions to
the Telegraph Equation in binary reproducing kernel
Hilbert spaces, , Submitted.