Genocchi polynomials as a tool for solving a class of fractional optimal control problems

Genocchi polynomials as a tool for solving a class of fractional optimal control problems

In this research, we use operational matrix based on Genocchi polynomials to obtain approximate solutions for a class of fractional optimal control problems. The approximate solution takes the form of a product consisting of unknown coefficients and the Genocchi polynomials. Our main task is to compute the numerical values of the unknown coefficients. To achieve this goal, we apply the initial condition of the problem, the Tau and Lagrange multiplier methods. We do error analysis as a means to study the behaviour of the approximate solutions.

___

  • 1] Grzesikiewicz, W., Wakulicz, A. & Zbiciak, A. (2013). Nonlinear problems of fractional calculus in modeling of mechanical systems, Int. J. Mech. Sci., 70(1), 90-98.
  • [2] Shah, Z., Bonyah, E., Alzahrani, E., Jan, R.& Alreshidi, N. A. (2022). Chaotic Phenom- ena and Oscillations in Dynamical Behaviour of Financial System via Fractional Calcu- lus, Complexity, 2022, Article ID 8113760, 14 pages.
  • [3] Nortey, S.N., Juga, M. & Bonyah, E. (2021). Fractional order modelling of Anthrax- Listeriosis coinfection with nonsingular Mittag-Leffler law. Scientific African, 16, e01221.
  • [4] Doha, E.H., Bhrawy, A.H. & Ezz-Eldien, S.S. (2015). An efficient Legendre spectral tau ma- trix formulation for solving fractional subdif- fusion and reaction subdiffusion equations, J. Comput. Nonlinear Dyn., 10(2), 021019.
  • [5] Bhrawy, A., Doha, E., Ezz-Eldien, S.S. & Ab- delkawy, M. (2016). A numerical technique based on the shifted Legendre polynomials for solving the time-fractional coupled KdV equations. Calcolo, 53, 1-17.
  • [6] Abd-Elhameed, W.M. & Youssri, Y.H. (2016). A novel operational matrix of Caputo fractional derivatives of Fibonacci polynomi- als: Spectral solutions of fractional differen- tial equations, Entropy, 18, 345.
  • [7] Kadkhoda, N. (2020). A numerical approach for solving variable order differential equa- tions using Bernstein polynomials, Alexandria Engineering Journal, 59(5), 3041-3047.
  • [8] G ̈urb ̈uz, B. & Sezer, M. (2016). Laguerre polynomial solutions of a class of initial and boundary value problems arising in science and engineering fields. Acta Phys. Pol., 130, 194-197.
  • [9] Sweilam, N., Nagy, A. & El-Sayed, A.A. (2016). On the numerical solution of space fractional order diffusion equation via shifted Chebyshev polynomials of the third kind, J. King Saud Univ. Sci., 28, 41-47.
  • [10] Rigi, F. & Tajadodi, H. (2019). Numeri- cal Approach of Fractional Abel Differential Equation by Genocchi Polynomials, Interna- tional Journal of Applied and Computational Mathematics, 5 (5), 134.
  • [11] Ezz-Eldien, SS., Doha, EH. & Baleanu, D. (2017). Bhrawy, AH., A numerical approach based on Legendre orthonormal polynomials for numerical solutions of fractional optimal control problems, Journal of Vibration and Control, 23(1), 16-30.
  • [12] Agrawal O.P. (2008). A quadratic numerical scheme for fractional optimal control prob- lems, Journal of Dynamic Systems, Measure- ment, and Control, 130(1), 1-11.
  • [13] Sweilam, N.H. & Alajmi, T.M. (2015). Le- gendre spectral collocation method for solv- ing some type of fractional optimal control problem, J. Adv. Res., 6, 393-403.
  • [14] Rabiei, K., Ordokhani, Y. & Babolian, E. (2018). Numerical Solution of 1D and 2D Fractional Optimal Control of System via Bernoulli Polynomials, Int. J. Appl. Comput. Math., 4(7).
  • [15] Rabiei, K., Ordokhani, Y. & Babolian, E. (2016). The Boubaker polynomials and their application to solve fractional optimal control problems, Nonlinear Dyn., 88, 1013-1026. [16] Kreyszig, E. (1978). Introductory Functional Analysis with Applications, New York: John Wiley and sons. Inc.
  • [17] Rivlin T.J. (1981). An Introduction to the Approximation of Functions, Dover Publica- tions, New York.
  • [18] Rakhshan, S.A., Effati S. & Kamyad, A.V. (2016). Solving a class of fractional opti- mal control problems by the Hamilton-Jacobi- Bellman equation, Journal of Vibration and Control, 24 (9), 1-16.