A numerical scheme for the one-dimensional neural field model

A numerical scheme for the one-dimensional neural field model

Neural field models, typically cast as continuum integro-differential equations, are widely studied to describe the coarse-grained dynamics of real cortical tis- sue in mathematical neuroscience. Studying these models with a sigmoidal fir- ing rate function allows a better insight into the stability of localised solutions through the construction of specific integrals over various synaptic connectiv- ities. Because of the convolution structure of these integrals, it is possible to evaluate neural field model using a pseudo-spectral method, where Fourier Transform (FT) followed by an inverse Fourier Transform (IFT) is performed, leading to an identical partial differential equation. In this paper, we revisit a neural field model with a nonlinear sigmoidal firing rate and provide an efficient numerical algorithm to analyse the model regarding finite volume scheme. On the other hand, numerical results are obtained by the algorithm.

___

  • [1] Horton, J. C., & Adams, D. L. (2005). The cortical column: a structure without a func- tion. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1456), 837-862.
  • [2] DeFelipe, J., Markram, H., & Rockland, K. S. (2012). The neocortical column. Frontiers in Neuroanatomy, 6, 22.
  • [3] Mountcastle, V. B. (1957). Modality and to- pographic properties of single neurons of cat’s somatic sensory cortex. Journal of Neuro- physiology, 20(4), 408-434.
  • [4] Martin, R. (2019). Neuroscience Methods: A Guide for Advanced Students. CRC Press.
  • [5] Beurle, R. L. (1956). Properties of a mass of cells capable of regenerating pulses. Philo- sophical Transactions of the Royal Society of London. Series B, Biological Sciences, 55-94.
  • [6] Wilson, H. R., & Cowan, J. D. (1972). Ex- citatory and inhibitory interactions in local- ized populations of model neurons. Biophysi- cal Journal, 12(1), 1-24.
  • [7] Wilson, H. R., & Cowan, J. D. (1973). A mathematical theory of the functional dy- namics of cortical and thalamic nervous tis- sue. Kybernetik, 13(2), 55-80.
  • [8] Amari, S. I. (1975). Homogeneous nets of neuron-like elements. Biological Cybernetics, 17(4), 211-220.
  • [9] Amari, S. I. (1977). Dynamics of pattern for- mation in lateral-inhibition type neural fields. Biological Cybernetics, 27(2), 77-87.
  • [10] Nunez, P. L. (1974). The brain wave equa- tion: a model for the EEG. Mathematical Biosciences, 21(3-4), 279-297.
  • [11] Coombes, S. (2010). Large-scale neural dy- namics: simple and complex. NeuroImage, 52(3), 731-739
  • [12] Ermentrout, G. B., & Cowan, J. D. (1979). A mathematical theory of visual hallucination patterns. Biological Cybernetics, 34(3), 137- 150.
  • [13] Giese, M. A. (2012). Dynamic neural field theory for motion perception (Vol. 469). Springer Science & Business Media.
  • [14] Laing, C. R. (2014). PDE Methods for Two- Dimensional Neural Fields. In Neural Fields (pp. 153-173). Springer, Berlin, Heidelberg.
  • 15] Coombes, S., beim Graben, P., Potthast, R., & Wright, J. (Eds.). (2014). Neural Fields: Theory and Applications. Springer.
  • [16] Ermentrout, G. B., & McLeod, J. B. (1993). Existence and uniqueness of travelling waves for a neural network. Proceedings of the Royal Society of Edinburgh Section A: Mathemat- ics, 123(3), 461-478.
  • [17] Coombes, S. (2005). Waves, bumps, and pat- terns in neural field theories. Biological Cy- bernetics, 93(2), 91-108.
  • [18] Coombes, S., Schmidt, H., & Bojak, I. (2012). Interface dynamics in planar neural field models. Journal of Mathematical Neuro- science, 2(1), 1-27.
  • [19] Gokce, A. (2017). The interfacial dynamics of Amari type neural field models on finite domains. (Doctoral dissertation, University of Nottingham).
  • [20] Laing, C. R., & Troy, W. C. (2003). PDE methods for nonlocal models. SIAM Journal on Applied Dynamical Systems, 2(3), 487- 516.
  • [21] Laing, C. R. (2005). Spiral waves in nonlocal equations. SIAM Journal on Applied Dynam- ical Systems, 4(3), 588-606.
  • [22] Coombes, S., beim Graben, P., Potthast, R., & Wright, J. (Eds.). (2014). Neural Fields: Theory and Applications. Springer.
  • [23] Fedak, A. (2018). A compact fourth-order fi- nite volume method for structured curvilinear grids. University of California, Davis.
  • [24] Cueto-Felgueroso, L. (2009). Finite volume methods for one-dimensional scalar conserva- tion laws. http://juanesgroup.mit.edu/lc ueto/teach.
  • [25] Zoppou, C., Knight, J. H. (1999). Analytical solution of a spatially variable coefficient ad- vection–diffusion equation in up to three di- mensions. Applied Mathematical Modelling, 23(9), 667-685.
  • [26] Eftekhari, A.A. et al. (2015). FVTool: a finite volume toolbox for Matlab. Zenodo. http: //doi.org/10.5281/zenodo.32745
  • [27] Nordbotten, J. M. (2014). Cell-centered finite volume discretizations for deformable porous media. International Journal for Numerical Methods in Engineering, 100(6), 399-418.
  • [28] Mungkasi, S. (2008). Finite volume methods for the one-dimensional shallow water equa- tions. (M. Math. Sc. thesis, Australian Na- tional University).
  • [29] Eymard, R., Gallou ̈et, T., Herbin, R., Latch ́e, J. C. (2007). Analysis tools for finite volume schemes. Proceedings of Equa Diff 11, 111-136.
  • [30] Versteeg, H. K., Malalasekera, W. (2007). An introduction to computational fluid dynam- ics: the finite volume method. Pearson Edu- cation.
  • [31] Abbott, M. B., Basco, D. R. (1997). Compu- tational fluid dynamics: an introduction for engineers. Longman.
  • [32] Patankar, S. V. (1991). Computation of con- duction and duct flow heat transfer. CRC Press.
  • [33] Patankar, S. V. (2018). Numerical heat trans- fer and fluid flow. CRC Press.
  • [34] Patankar, S. V. (1981). A calculation pro- cedure for two-dimensional elliptic situations. Numerical Heat Transfer, 4(4), 409-425.
  • [35] Evans, L.C. (2010). Partial differential equa- tions. American Mathematical Society, Prov- idence, Rhode Island.
  • [36] Anderson, J. D., Wendt, J. (1995). Computa- tional fluid dynamics (Vol. 206, p. 332). New York: McGraw-Hill.
  • [37] Morton, K. W., & Mayers, D. F. (2005). Nu- merical solution of partial differential equa- tions: an introduction. Cambridge University Press.
  • [38] LeVeque, R. J. (2007). Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems. Society for Industrial and Applied Mathematics.
  • [39] LeVeque, R. J. (2002). Finite volume meth- ods for hyperbolic problems (Vol. 31). Cam- bridge university press.
  • [40] Badr, M., Yazdani, A., & Jafari, H. (2018). Stability of a finite volume element method for the time-fractional advection-diffusion equation. Numerical Methods for Partial Dif- ferential Equations, 34(5), 1459-1471.
  • [41] Syrakos, A., Goulas, A. (2006). Estimate of the truncation error of finite volume dis- cretization of the Navier–Stokes equations on colocated grids. International journal for nu- merical methods in fluids, 50(1), 103-130.
  • [42] Fraysse, F., de Vicente, J., Valero, E. (2012). The estimation of truncation error by τ - estimation revisited. Journal of Computa- tional Physics, 231(9), 3457-3482.
  • [43] Ermentrout, G. B., Folias, S. E., & Kil- patrick, Z. P. (2014). Spatiotemporal pattern formation in neural fields with linear adapta- tion. In Neural Fields (pp. 119-151). Springer, Berlin, Heidelberg.
  • [44] Benda, J., & Herz, A. V. (2003). A universal model for spike-frequency adaptation. Neural Computation, 15(11), 2523-2564.