Bu çalışmada öz-düzenlemeli öğrenme ve öğrenme analitikleri alanında yazılmış makaleler sistematik olarak incelenmiştir. Web of Science veri tabanından erişilen 72 makale belli ölçütlere göre analiz edilmiştir. Makalelerin yayınlandığı yıllar, yöntemleri, anahtar kelimeleri, yapıldığı ülkeler, veri toplama araçları, katılımcı düzeyleri, öğrenme alanları incelenmiş ve eğilimler belirlenmiştir. Araştırma konusuyla ilgili makalelerin son yıllarda artış gösterdiği görülmüştür. Makalelerde en fazla deneysel yöntemlerin tercih edildiği sonucuna ulaşılmıştır. Öğrenme alanlarına bakıldığında ise çeşitli alanlara rastlanmış ancak matematik ve mühendislik alanında yapılan çalışmaların sayısı ilk sıralarda yer almaktadır. Avustralya, ABD ve Avrupa ülkelerinin öne çıktığı araştırmada çevrimiçi öğrenme alanlarının gelişmesinde ülkelerin gelişmişlik düzeyinin ve coğrafi şartlarının etkili olduğu düşünülmektedir. Makalelerde yazarların daha çok öğrenci başarılarına ve öğrenme süreçlerine yönelik sonuçlara ulaştığı söylenebilir. Katılımcı olarak başta lisans düzeyi olmak üzere büyük oranda öğrenciler tercih edilmiştir. Öğrenmede büyük rolü olan eğitimcilere yönelik daha fazla çalışma yapılması tavsiye edilmektedir. Bu alanda ihtiyaç duyulan çalışmaların belirlenmesi ve gelecek çalışmalarda uygulayıcılara yol göstermesi açısından mevcut çalışmanın katkı sağlayacağı düşünülmektedir.
___
Aguilar, S. J., Karabenick, S. A., Teasley, S. D., & Baek, C. (2021). Associations between learning analytics dashboard exposure and motivation and self-regulated learning. Computers and Education, 162, 104085. https://doi.org/10.1016/j.compedu.2020.104085
Ahmad Uzir, N.A., Gasevic, D., Matcha, W., Jovanovic, J., & Pardo, A. (2020). Analytics of time management strategies in a flipped classroom. Journal of Computer Assisted Learning,36(1), 70-88https://doi.org/10.1111/jcal.12392
Bahçeci, F. (2015). Öğrenme yönetim sistemlerinde kullanılan öğrenme analitikleri araçlarının incelenmesi. Turkish Journal of Educational Studies, 2(1), 41–58. http://dergi.firat.edu.tr/index.php/turk-jes/article/download/56/31
Bozkurt, A. (2016). Öğrenme analitiği : e-öğrenme , büyük veri ve bireyselleştirilmiş öğrenme. Açıköğretim Uygulamaları ve Araştırma Dergisi, 2(4), 55–81. https://dergipark.org.tr/en/pub/auad/issue/34066/377071
Campbell, B. J. P., DeBlois, P. B., & Oblinger, diana G. (2007). Academic analytics: A new tool for a new era. EDUCAUSE Review, 51(2), 41–57. https://doi.org/10.1038/scientificamerican08201881-118
Cha, H., & Park, T. (2019). Applying and evaluating visualization design guidelines for a MOOC dashboard to facilitate self-regulated learning based on learning analytics. KSII Transactions on Internet & Information Systems, 13(6), 2799–2823. https://doi.org/10.3837/tiis.2019.06.002
Clow, D. (2012). The learning analytics cycle: closing the loop effectively. In Proceedings of the 2nd International conference on learning analytics and knowledge (pp. 134-138). https://doi.org/10.1145/2330601.2330636
Sáiz Manzanares, M. C., Marticorena Sánchez, R., García Osorio, C. I., & Díez-Pastor, J. F. (2017). How do B-learning and learning patterns influence learning outcomes?. Frontiers in Psychology, 8, 745. https://doi.org/10.3389/fpsyg.2017.00745
Drachsler, H., & Kalz, M. (2016). The MOOC and learning analytics innovation cycle (MOLAC): A reflective summary of ongoing research and its challenges. Journal of Computer Assisted Learning, 32(3), 281–290. https://doi.org/10.1111/jcal.12135
Erdemci, H. (2019). Öğrenme analitiklerinin öğrenenlerin öz düzenlemeli öğrenmelerine etkisini incelemesi.Doktora tezi, Trabzon Üniversitesi, Trabzon.
Gasevic, D., Mirriahi, N., Dawson, S., & Joksimovic, S. (2017). Effects of instructional conditions and experience on the adoption of a learning tool. Computers in Human Behavior, 67, 207-220. https://doi.org/10.1016/j.chb.2016.10.026
Gelan, A., Fastre, G., Verjans, M., Martin, N., Jansenswillen, N., Creemers, G., Lieben, M., & Micheal, T. (2018). Article affordances and limitations of learning analytics for computer-assisted language learning : A case study of the VITAL project. Computer Assisted Language Learning, 31(3) 294–319. https://doi.org/10.1080/09588221.2017.1418382
Gülcüoğlu, E., Karaoğlan Yılmaz, F. G., & Gökkaya, G. (2021). Öğrenme analitikleri kapsamında 2016-2019 yıllar arasında web of science veritabanında yayınlanan makalelerin betimsel analizi. Bilgi ve İletişim Teknolojileri Dergisi, 3(1), 42-76. https://dergipark.org.tr/en/pub/bited/issue/63346/876562
Howell, J., Roberts, L. D., & Mancini, V. O. (2018). Learning analytics messages: Impact of grade, sender, comparative information and message style on student affect and academic resilience. Computers in Human Behavior, 89, 8-15. https://doi.org/10.1016/j.chb.2018.07.021
Ifenthaler, D., Gibson, D., Prasse, D., Shimada, A., & Yamada, M. (2021). Putting learning back into learning analytics: Actions for policy makers, researchers, and practitioners. Educational Technology Research and Development, 69, 2131–2150. .https://doi.org/10.1007/s11423-020-09909-8
Jivet, I., Scheffel, M., Schmitz, M., Robbers, S., Specht, M., & Drachsler, H. (2020). From students with love: An empirical study on learner goals, self-regulated learning and sense-making of learning analytics in higher education. Internet and Higher Education, 47, 100758. https://doi.org/10.1016/j.iheduc.2020.100758
Karaoğlan Yılmaz, F. G.(2020). Öğrenme analitiği geribildirimleri ile desteklenmiş ters-yüz öğrenme ortamının çeşitli değişkenler açısından modellenmesi. Bilgi ve İletişim Teknolojileri Dergisi/Journal of Information and Communication Technologies, 1(2), 78–94. https://dergipark.org.tr/en/pub/bited/issue/54128/693779
Karaoglan Yilmaz, F. G., & Yilmaz, R. (2020). Student opinions about personalized recommendation and feedback based on learning analytics. Technology, Knowledge and Learning, 25(4), 753-768. https://doi.org/10.1007/s10758-020-09460-8
Karaoglan Yilmaz, F. G., & Yilmaz, R. (2021). Learning analytics as a metacognitive tool to influence learner transactional distance and motivation in online learning environments. Innovations in Education and Teaching International, 58(5), 575-585. https://doi.org/10.1080/14703297.2020.1794928
Kim, D., Yoon, M., Jo, I., & Branch, R. M. (2018). Learning analytics to support self-regulated learning in asynchronous online courses: A case study at a women’s university in South Korea. Computers & Education, 127, 233-251.https://doi.org/10.1016/j.compedu.2018.08.023
Kizilcec, R. F., Pérez-sanagustín, M., & Maldonado, J. J. (2016). Self-regulated learning strategies predict learner behavior and goal attainment in massive open online courses. Computers & Education, 104, 18-33.https://doi.org/10.1016/j.compedu.2016.10.001
Li, S., Du, H., Xing, W., Zheng, J., Chen, G., & Xie, C. (2020). Examining temporal dynamics of self-regulated learning behaviors in STEM learning : A network approach. Computers & Education, 158, 103987. https://doi.org/10.1016/j.compedu.2020.103987
Lim, L., & Dawson, S. (2020). Students sense-making of personalised feedback based on learning analytics. Australasian Journal of Educational Technology, 36(6), 15–33. https://doi.org/10.14742/ajet.6370
Long, P. D., & Siemens, G. (2014). Penetrating the fog: analytics in learning and education. Italian Journal of Educational Technology, 22(3), 132–137. https://ijet.itd.cnr.it/article/view/195
Lu, O. H. T., Huang, J. C. H., Huang, A. Y. Q., Yang, S. J. H. (2017). Applying learning analytics for improving students engagement and learning outcomes in an MOOCs enabled collaborative programming course. Interactive Learning Environments, 25(2), 220-234. https://doi.org/10.1080/10494820.2016.1278391
Mangaroska, K., & Giannakos, M. (2019). Learning analytics for learning design: a systematic literature review of analytics-driven design to enhance learning. IEEE Transactions on Learning Technologies, 12(4), 516–534. https://doi.org/10.1109/TLT.2018.2868673
Matcha, W., Gaˇ, D., Pardo, A., Lim, L., Maldonado-mahauad, J., Gentili, S., & Mar, P. (2020). Analytics of learning strategies : Role of course design and delivery modality. Journal of Learning Analytics, 7(2), 45–71. https://doi.org/10.18608/jla.2020.72.3
Montgomery, A. P., Mousavi, A., Carbonaro, M., Hayward, D. V, & Dunn, W. (2017). Using learning analytics to explore self-regulated learning in flipped blended learning music teacher education. British Journal of Educational Technology, 50(1), 114-127.https://doi.org/10.1111/bjet.12590
Namoun, A., & Alshanqiti, A. (2021). Predicting student performance using data mining and learning analytics techniques: A systematic literature review. Applied Sciences, 11(1), 237. https://doi.org/10.3390/app11010237
Pérez-álvarez, R., Maldonado-mahauad, J., & Pérez-sanagustín, M. (2018). Design of a tool to support self-regulated learning strategies in MOOCs. Journal of Universal Computer Science, 24(8), 1090–1109. https://doi.org/10.3217/jucs-024-08-1090
Pintrich, P. R. (1995). Understanding self-regulated learning. New Directions for Teaching and Learning, 1995(63), 3–12. https://doi.org/10.1002/tl.37219956304
Roberts, L. D., Howell, J. A., & Seaman, K. (2017). Give me a customizable dashboard : personalized learning analytics dashboards in higher education. Technology, Knowledge and Learning, 22(3), 317–333. https://doi.org/10.1007/s10758-017-9316-1
Silva, J. C., Erik, Z., Rodrigo Lins, R., Jorge Luis, C. R., & Fernando da Fonseca de, S. (2018). Effects of learning analytics on students ’ self-regulated learning in flipped classroom. International Journal of Information and Communication Technology Education, 14(3), 91–107. https://doi.org/10.4018/IJICTE.2018070108
Tabuenca, B., Kalz, M., Drachsler, H., & Specht, M. (2015). Time Will Tell: The role of mobile learning analytics in self-regulated learning Bernardo. Computers & Education, 89, 53-74.https://doi.org/10.1016/j.compedu.2015.08.004
Tang, H. (2021). Person-centered analysis of self-regulated learner profiles in MOOCs : A cultural perspective. Educational Technology Research and Development, 69(2), 1247-1269. https://doi.org/10.1007/s11423-021-09939-w
Tsai, Y., Rates, D., Moreno-marcos, P. M., Muñoz-merino, P. J., Jivet, I., Scheffel, M., Drachsler, H., Delgado, C., & Gašević, D. (2020). Learning analytics in European higher education -Trends and barriers. Computers & Education, 155(May), 103933. https://doi.org/10.1016/j.compedu.2020.103933
Valenzuela, C. G., González, C. G., Rojas, A., & Tagle, M. (2021). Learning analytics in higher education : a preponderance of analytics but very little learning ? International Journal of Educational Technology in Higher Education, 18(1), 1-19. https://doi.org/10.1186/s41239-021-00258-x
Valiente, J. A. R., Merino, P. J. M., Member, S., Kloos, C. D., Member, S., Niemann, K., Scheffel, M., & Wolpers, M. (2016). Analyzing the impact of using optional activities in self - regulated learning. IEEE Transactions on Learning Technologies, 9(3), 231-243.https://doi.org/10.1109/TLT.2016.2518172
Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in Human Behavior, 89, 98–110. https://doi.org/10.1016/j.chb.2018.07.027
Yilmaz, R., Karaoglan Yilmaz, F. G., & Kilic Cakmak, E. (2017). The impact of transactive memory system and interaction platform in collaborative knowledge construction on social presence and self-regulation. Interactive Learning Environments, 25(8), 949-969. https://doi.org/10.1080/10494820.2016.1224905
You, J. W. (2016). Identifying significant indicators using LMS data to predict course achievement in online learning. The Internet and Higher Education, 29, 23-30. https://doi.org/10.1016/j.iheduc.2015.11.003
Yu, X., Xiaoxue, C., & Michael, W. J. (2020). Factors that impact social networking in online self ‑ regulated learning activities. Educational Technology Research and Development, 68(6), 3077–3095. https://doi.org/10.1007/s11423-020-09843-9
Zheng, J., Xing, W., Zhu, G., Chen, G., & Zhao, H. (2020). Profiling self-regulation behaviors in STEM learning of engineering design. Computers & Education, 143, 103669. https://doi.org/10.1016/j.compedu.2019.103669