Öğrenme Analitikleri ve Öz-Düzenlemeli Öğrenme Üzerine Araştırma Eğilimlerinin İncelenmesi: Sistematik Bir İnceleme

Bu çalışmada öz-düzenlemeli öğrenme ve öğrenme analitikleri alanında yazılmış makaleler sistematik olarak incelenmiştir. Web of Science veri tabanından erişilen 72 makale belli ölçütlere göre analiz edilmiştir. Makalelerin yayınlandığı yıllar, yöntemleri, anahtar kelimeleri, yapıldığı ülkeler, veri toplama araçları, katılımcı düzeyleri, öğrenme alanları incelenmiş ve eğilimler belirlenmiştir. Araştırma konusuyla ilgili makalelerin son yıllarda artış gösterdiği görülmüştür. Makalelerde en fazla deneysel yöntemlerin tercih edildiği sonucuna ulaşılmıştır. Öğrenme alanlarına bakıldığında ise çeşitli alanlara rastlanmış ancak matematik ve mühendislik alanında yapılan çalışmaların sayısı ilk sıralarda yer almaktadır. Avustralya, ABD ve Avrupa ülkelerinin öne çıktığı araştırmada çevrimiçi öğrenme alanlarının gelişmesinde ülkelerin gelişmişlik düzeyinin ve coğrafi şartlarının etkili olduğu düşünülmektedir. Makalelerde yazarların daha çok öğrenci başarılarına ve öğrenme süreçlerine yönelik sonuçlara ulaştığı söylenebilir. Katılımcı olarak başta lisans düzeyi olmak üzere büyük oranda öğrenciler tercih edilmiştir. Öğrenmede büyük rolü olan eğitimcilere yönelik daha fazla çalışma yapılması tavsiye edilmektedir. Bu alanda ihtiyaç duyulan çalışmaların belirlenmesi ve gelecek çalışmalarda uygulayıcılara yol göstermesi açısından mevcut çalışmanın katkı sağlayacağı düşünülmektedir.

___

Aguilar, S. J., Karabenick, S. A., Teasley, S. D., & Baek, C. (2021). Associations between learning analytics dashboard exposure and motivation and self-regulated learning. Computers and Education, 162, 104085. https://doi.org/10.1016/j.compedu.2020.104085

Ahmad Uzir, N.A., Gasevic, D., Matcha, W., Jovanovic, J., & Pardo, A. (2020). Analytics of time management strategies in a flipped classroom. Journal of Computer Assisted Learning,36(1), 70-88https://doi.org/10.1111/jcal.12392

Bahçeci, F. (2015). Öğrenme yönetim sistemlerinde kullanılan öğrenme analitikleri araçlarının incelenmesi. Turkish Journal of Educational Studies, 2(1), 41–58. http://dergi.firat.edu.tr/index.php/turk-jes/article/download/56/31

Bozkurt, A. (2016). Öğrenme analitiği : e-öğrenme , büyük veri ve bireyselleştirilmiş öğrenme. Açıköğretim Uygulamaları ve Araştırma Dergisi, 2(4), 55–81. https://dergipark.org.tr/en/pub/auad/issue/34066/377071

Campbell, B. J. P., DeBlois, P. B., & Oblinger, diana G. (2007). Academic analytics: A new tool for a new era. EDUCAUSE Review, 51(2), 41–57. https://doi.org/10.1038/scientificamerican08201881-118

Cha, H., & Park, T. (2019). Applying and evaluating visualization design guidelines for a MOOC dashboard to facilitate self-regulated learning based on learning analytics. KSII Transactions on Internet & Information Systems, 13(6), 2799–2823. https://doi.org/10.3837/tiis.2019.06.002

Clow, D. (2012). The learning analytics cycle: closing the loop effectively. In Proceedings of the 2nd International conference on learning analytics and knowledge (pp. 134-138). https://doi.org/10.1145/2330601.2330636

Sáiz Manzanares, M. C., Marticorena Sánchez, R., García Osorio, C. I., & Díez-Pastor, J. F. (2017). How do B-learning and learning patterns influence learning outcomes?. Frontiers in Psychology, 8, 745. https://doi.org/10.3389/fpsyg.2017.00745

Drachsler, H., & Kalz, M. (2016). The MOOC and learning analytics innovation cycle (MOLAC): A reflective summary of ongoing research and its challenges. Journal of Computer Assisted Learning, 32(3), 281–290. https://doi.org/10.1111/jcal.12135

Erdemci, H. (2019). Öğrenme analitiklerinin öğrenenlerin öz düzenlemeli öğrenmelerine etkisini incelemesi.Doktora tezi, Trabzon Üniversitesi, Trabzon.

Gasevic, D., Mirriahi, N., Dawson, S., & Joksimovic, S. (2017). Effects of instructional conditions and experience on the adoption of a learning tool. Computers in Human Behavior, 67, 207-220. https://doi.org/10.1016/j.chb.2016.10.026

Gelan, A., Fastre, G., Verjans, M., Martin, N., Jansenswillen, N., Creemers, G., Lieben, M., & Micheal, T. (2018). Article affordances and limitations of learning analytics for computer-assisted language learning : A case study of the VITAL project. Computer Assisted Language Learning, 31(3) 294–319. https://doi.org/10.1080/09588221.2017.1418382

Gülcüoğlu, E., Karaoğlan Yılmaz, F. G., & Gökkaya, G. (2021). Öğrenme analitikleri kapsamında 2016-2019 yıllar arasında web of science veritabanında yayınlanan makalelerin betimsel analizi. Bilgi ve İletişim Teknolojileri Dergisi, 3(1), 42-76. https://dergipark.org.tr/en/pub/bited/issue/63346/876562

Howell, J., Roberts, L. D., & Mancini, V. O. (2018). Learning analytics messages: Impact of grade, sender, comparative information and message style on student affect and academic resilience. Computers in Human Behavior, 89, 8-15. https://doi.org/10.1016/j.chb.2018.07.021

Ifenthaler, D., Gibson, D., Prasse, D., Shimada, A., & Yamada, M. (2021). Putting learning back into learning analytics: Actions for policy makers, researchers, and practitioners. Educational Technology Research and Development, 69, 2131–2150. .https://doi.org/10.1007/s11423-020-09909-8

Jivet, I., Scheffel, M., Schmitz, M., Robbers, S., Specht, M., & Drachsler, H. (2020). From students with love: An empirical study on learner goals, self-regulated learning and sense-making of learning analytics in higher education. Internet and Higher Education, 47, 100758. https://doi.org/10.1016/j.iheduc.2020.100758

Karaoğlan Yılmaz, F. G.(2020). Öğrenme analitiği geribildirimleri ile desteklenmiş ters-yüz öğrenme ortamının çeşitli değişkenler açısından modellenmesi. Bilgi ve İletişim Teknolojileri Dergisi/Journal of Information and Communication Technologies, 1(2), 78–94. https://dergipark.org.tr/en/pub/bited/issue/54128/693779

Karaoglan Yilmaz, F. G., & Yilmaz, R. (2020). Student opinions about personalized recommendation and feedback based on learning analytics. Technology, Knowledge and Learning, 25(4), 753-768. https://doi.org/10.1007/s10758-020-09460-8

Karaoglan Yilmaz, F. G., & Yilmaz, R. (2021). Learning analytics as a metacognitive tool to influence learner transactional distance and motivation in online learning environments. Innovations in Education and Teaching International, 58(5), 575-585. https://doi.org/10.1080/14703297.2020.1794928

Kim, D., Yoon, M., Jo, I., & Branch, R. M. (2018). Learning analytics to support self-regulated learning in asynchronous online courses: A case study at a women’s university in South Korea. Computers & Education, 127, 233-251.https://doi.org/10.1016/j.compedu.2018.08.023

Kizilcec, R. F., Pérez-sanagustín, M., & Maldonado, J. J. (2016). Self-regulated learning strategies predict learner behavior and goal attainment in massive open online courses. Computers & Education, 104, 18-33.https://doi.org/10.1016/j.compedu.2016.10.001

Li, S., Du, H., Xing, W., Zheng, J., Chen, G., & Xie, C. (2020). Examining temporal dynamics of self-regulated learning behaviors in STEM learning : A network approach. Computers & Education, 158, 103987. https://doi.org/10.1016/j.compedu.2020.103987

Lim, L., & Dawson, S. (2020). Students sense-making of personalised feedback based on learning analytics. Australasian Journal of Educational Technology, 36(6), 15–33. https://doi.org/10.14742/ajet.6370

Long, P. D., & Siemens, G. (2014). Penetrating the fog: analytics in learning and education. Italian Journal of Educational Technology, 22(3), 132–137. https://ijet.itd.cnr.it/article/view/195

Lu, O. H. T., Huang, J. C. H., Huang, A. Y. Q., Yang, S. J. H. (2017). Applying learning analytics for improving students engagement and learning outcomes in an MOOCs enabled collaborative programming course. Interactive Learning Environments, 25(2), 220-234. https://doi.org/10.1080/10494820.2016.1278391

Mangaroska, K., & Giannakos, M. (2019). Learning analytics for learning design: a systematic literature review of analytics-driven design to enhance learning. IEEE Transactions on Learning Technologies, 12(4), 516–534. https://doi.org/10.1109/TLT.2018.2868673

Matcha, W., Gaˇ, D., Pardo, A., Lim, L., Maldonado-mahauad, J., Gentili, S., & Mar, P. (2020). Analytics of learning strategies : Role of course design and delivery modality. Journal of Learning Analytics, 7(2), 45–71. https://doi.org/10.18608/jla.2020.72.3

Montgomery, A. P., Mousavi, A., Carbonaro, M., Hayward, D. V, & Dunn, W. (2017). Using learning analytics to explore self-regulated learning in flipped blended learning music teacher education. British Journal of Educational Technology, 50(1), 114-127.https://doi.org/10.1111/bjet.12590

Namoun, A., & Alshanqiti, A. (2021). Predicting student performance using data mining and learning analytics techniques: A systematic literature review. Applied Sciences, 11(1), 237. https://doi.org/10.3390/app11010237

Pérez-álvarez, R., Maldonado-mahauad, J., & Pérez-sanagustín, M. (2018). Design of a tool to support self-regulated learning strategies in MOOCs. Journal of Universal Computer Science, 24(8), 1090–1109. https://doi.org/10.3217/jucs-024-08-1090

Pintrich, P. R. (1995). Understanding self-regulated learning. New Directions for Teaching and Learning, 1995(63), 3–12. https://doi.org/10.1002/tl.37219956304

Roberts, L. D., Howell, J. A., & Seaman, K. (2017). Give me a customizable dashboard : personalized learning analytics dashboards in higher education. Technology, Knowledge and Learning, 22(3), 317–333. https://doi.org/10.1007/s10758-017-9316-1

Silva, J. C., Erik, Z., Rodrigo Lins, R., Jorge Luis, C. R., & Fernando da Fonseca de, S. (2018). Effects of learning analytics on students ’ self-regulated learning in flipped classroom. International Journal of Information and Communication Technology Education, 14(3), 91–107. https://doi.org/10.4018/IJICTE.2018070108

Tabuenca, B., Kalz, M., Drachsler, H., & Specht, M. (2015). Time Will Tell: The role of mobile learning analytics in self-regulated learning Bernardo. Computers & Education, 89, 53-74.https://doi.org/10.1016/j.compedu.2015.08.004

Tang, H. (2021). Person-centered analysis of self-regulated learner profiles in MOOCs : A cultural perspective. Educational Technology Research and Development, 69(2), 1247-1269. https://doi.org/10.1007/s11423-021-09939-w

Tsai, Y., Rates, D., Moreno-marcos, P. M., Muñoz-merino, P. J., Jivet, I., Scheffel, M., Drachsler, H., Delgado, C., & Gašević, D. (2020). Learning analytics in European higher education -Trends and barriers. Computers & Education, 155(May), 103933. https://doi.org/10.1016/j.compedu.2020.103933

Valenzuela, C. G., González, C. G., Rojas, A., & Tagle, M. (2021). Learning analytics in higher education : a preponderance of analytics but very little learning ? International Journal of Educational Technology in Higher Education, 18(1), 1-19. https://doi.org/10.1186/s41239-021-00258-x

Valiente, J. A. R., Merino, P. J. M., Member, S., Kloos, C. D., Member, S., Niemann, K., Scheffel, M., & Wolpers, M. (2016). Analyzing the impact of using optional activities in self - regulated learning. IEEE Transactions on Learning Technologies, 9(3), 231-243.https://doi.org/10.1109/TLT.2016.2518172

Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in Human Behavior, 89, 98–110. https://doi.org/10.1016/j.chb.2018.07.027

Yilmaz, R., Karaoglan Yilmaz, F. G., & Kilic Cakmak, E. (2017). The impact of transactive memory system and interaction platform in collaborative knowledge construction on social presence and self-regulation. Interactive Learning Environments, 25(8), 949-969. https://doi.org/10.1080/10494820.2016.1224905

You, J. W. (2016). Identifying significant indicators using LMS data to predict course achievement in online learning. The Internet and Higher Education, 29, 23-30. https://doi.org/10.1016/j.iheduc.2015.11.003

Yu, X., Xiaoxue, C., & Michael, W. J. (2020). Factors that impact social networking in online self ‑ regulated learning activities. Educational Technology Research and Development, 68(6), 3077–3095. https://doi.org/10.1007/s11423-020-09843-9

Zheng, J., Xing, W., Zhu, G., Chen, G., & Zhao, H. (2020). Profiling self-regulation behaviors in STEM learning of engineering design. Computers & Education, 143, 103669. https://doi.org/10.1016/j.compedu.2019.103669