Effects of Rhizobacteria on Plant Development, Quality of Flowering and Bulb Mineral Contents in Hyacinthus orientalis L.

Size of bulbs is directly proportional to the quality of the flower, the commercial value of the bulb and getting more bulblet. The research was carried out to evaluate the effects of PGPR on plant growth parameters, flowering, bulb quality and bulb mineral contents in hyacinth (Hyacinthus orientalis L. cv. Aiolos) under greenhouse condition. In the study, there were 5 applications: (T1) Pseudomonas putida strain RCK-42A, (T2) Kluyvera cryocrescens strain RCK-113C, (T3) Paenibacillus polymyxa strain RCK-12E, (T4) Bacillus subtilis strain RCK-17C, and (T5) Control (uninoculated bacteria). The surface-sterilized bulbs were incubated separately by shaking at 80 rpm for two hours at 28 ºC to coat the bulbs with the bacteria. The chlorophyll content (50.02), leaf length (26.03 cm), leaf area (268.38cm2 ), flower fresh and dry weight (15.54 g and 0.88 g) in T2 (Kluyvera cryocrescens strain RCK-113C) was found as the maximum according to other applications. The highest leaf width (6.37 cm) and the highest floret number were observed in T4. It was shown that the maximum bulb diameter (42.57 mm), bulb length (40.01 mm) and bulb weight (12.01 g) were determined in T2. The maximum N (2.90%), P (1.98%) and Ca (1.74%) were found in T3. Maximum Fe (0.48 mg kg-1 ), Mn (151.20 mg kg-1 ) and Zn (35.28 mg kg-1 ) were found in T1. Use of especially Kluyvera cryocrescens strain RCK-113C and Pseudomonas putida strain RCK-42A bacterial isolates may be effective in maintaining the sustainability of the environment and growing medium in the cultivation of hyacinth and also the development of bio fertilizer.


Addai, I. K., 2011. Influence of cultivar or nutrients application on growth, flower production and bulb yield of the common hyacinth. American Journal of Scientific and Industrial Research 2(2):229-245. doi:10.5251/ajsir.2011.

Addai, I. K., 2010. Growth and biochemistry of the common hyacinth (Hyacinthus orientalis L.) and the lily (Lilium longiflorum L.). PhD Thesis, University of Sussex. http://srodev.sussex.ac.uk/id/eprint/2492

Alam, S., Cui, Z. J., Yamagishi, T., and Ishii, R., 2001. Grain yield and related physiological characteristics of rice plants (Oryza sativa L.) inoculated with free-living rhizobacteria. Plant Production Science 4(2): 126-130.

Altindag, M., Sahin, M., Esitken, A., Ercisli, S., Guleryuz, M., Donmez, M. F., and Sahin, F., 2006. Biological control of brown rot (Moniliana laxa Ehr.) on apricot (Prunus armeniaca L. cv. Hacıhaliloğlu) by Bacillus, Burkholdria, and Pseudomonas application under in vitro and in vivo conditions. Biological Control 38(3): 369-372.

https://doi.org/10.1016/j.biocontrol.2006.04.015 AOAC, 1990. Official methods of Analysis of the AOAC. Volume 2 (No. Ed. 15). Association of Official Analytical Chemists Inc.

Arab, A., Zamani, G. R., Sayyari, M. H., and Asili, J., 2015. Effects of chemical and biological fertilizers on morphophysiological traits of marigold (Calendula officinalis L.). European Journal of Medicinal Plants 8(1): 60-68. doi: 10.9734/EJMP/2015/16697

Arikan, Ş., and Pirlak, L., 2016. Effects of Plant Growth Promoting Rhizobacteria (PGPR) on growth, yield and fruit quality of sour cherry (Prunus cerasus L.). ErwerbsObstbau 58(4): 221-226. https://doi.org/10.1007/s10341-016-0278-6

Asghar, H., Zahir, Z., Arshad, M., and Khaliq, A., 2002. Relationship between in vitro production of auxins by rhizobacteria and their growth-promoting activities in Brassica juncea L.. Biology and Fertility of Soils 35(4): 231-237. DOI 10.1007/s00374-002-0462-8

Bailey, L. H., 1963. The standard Cyclopedia of horticulture. Vol. II. The Macmillan Company. New York. 2422.

Botta, A. L., Santacecilia, A., Ercole, C., Cacchio, P., and Del Gallo, M., 2013. In vitro and in vivo inoculation of four Endophytic bacteria on Lycopersicon esculentum. New Biotechnology 30(6): 666-674. https://doi.org/10.1016/j.nbt.2013.01.001

Bremner, J. M., 1996. Nitrogen—total. In: Sparks DL, editor. Methods of Soil Analysis. Part III. Chemical Methods. 2nd ed. Madison, WI, USA: Soil Science Society of America, pp. 1085–1122.

Buttery, B. R., and Buzzell, R. I., 1977. The relationship between chlorophyll content and rate of photosynthesis in soybeans. Canadian Journal of Plant Science 57(1): 1- 5.

Çakmakçı, R., Dönmez, F., Aydın, A., and Şahin, F., 2006. Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biology and Biochemistry 38(6): 1482-1487. https://doi.org/10.1016/j.soilbio.2005.09.019

D’Haene, K., Salomez, J., Verhaeghe, M., Van de Sande, T., De Nies, J., De Neve, S., and Hofman, G., 2018. Can optimum yield and quality of vegetables be reconciled with low residual soil mineral nitrogen at harvest?. Scientia Horticulturae 233: 78-89. https://doi.org/10.1016/j.scienta.2018.01.034

De Silva, A., Patterson, K., Rothrock, C., and Moore, J., 2000. Growth promotion of highbush blueberry by fungal and bacterial inoculants. HortSience 35(7): 1228- 1230. http://hortsci.ashspublications.org/content/35/7/122 8.full.pdf+html

Di Benedetto, N. A., Campaniello, D., and Bevilacqua, A., 2016. Characterization of autochthonous plant growth promoting bacteria in relation to durum wheat nitrogen use efficiency, In: Proceedings of Plant Biology Europe Congress EPSO/FESPB, Prague Czech Republic 26–30.

Egamberdiyeva, D., 2007. The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Applied Soil Ecology 36(2- 3): 184-189. doi:10.1016/j.apsoil.2007.02.005

Ekim, T., Koyuncu, M., Vural, M., Duman, H., Aytaç, Z., and Adıgüzel, N., 2000. Red data book of Turkish plants (Pteridophyta and Spermatophyta). Turkish Association for the Conservation of Nature, Ankara. Environ Conservation 26(3): 190-199.

Elkoca, E., Kantar, F., and Sahin, F., 2008. Influence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant growth and yield of chickpea. Journal of Plant Nutrition 31: 157–171. https://doi.org/10.1080/01904160701742097

Erman, M., Kotan, R., Çakmakçı, R., Çığ, F., Karagöz, K., and Sezen, M., 2010. Effect of nitrogen fixing and phosphate-solubilizing Rhizobacteria isolated from Van Lake Basin on the growth and quality properties in wheat and sugar beet. Turkey IV. Organic Farming Symposium, 28 June – 1 July, Erzurum, Turkey, 325–329.

Esitken, A., Pirlak, L., Turan, M., and Sahin, F., 2006. Effects of floral and foliar application of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrition of sweet cherry. Scientia Horticulturae 110(4): 324-327. doi:10.1016/j.scienta.2006.07.023

Glick, B. R., 1995. The enhancement of plant growth by freeliving bacteria. Canadian Journal of Microbiology 41: 109–117. https://doi.org/10.1139/m95-015

Gravel, V., Antoun, H., and Tweddell, R. J., 2007. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biology and Biochemistry 39(8): 1968-1977. doi:10.1016/j.soilbio.2007.02.015

Kizil, S., Sesiz, U., and Khawar, K. M., 2016. Improved in vitro propagation of Hyacinthus orientalis L. using fruits containing immature zygotic embryos and tender leaf sheath as explants. Acta Scientiarum PolonorumHortorum Cultus 15(5), 15-30.

Kotan, R., Sahin, F., and Ala, A., 2005. Identification and pathogenicity of bacteria isolated from pome fruits trees in eastern Anatolia region of Turkey. Journal of Plant Diseases and Protection 113: 8–13. https://www.researchgate.net/publication/228491559

Kotan, R., Sahin, F., Demirci, E., Ozbek, A., Eken, C., and Miller, S. A., 1999. Evaluation of antagonistic bacteria for biological control of Fusarium dry rot of potato. Phytopathology 89(6): 41.

Le, T. A., Pék, Z., Takács, S., Neményi, A., Daood, H. G., and Helyes, L., 2018. The effect of plant growth promoting rhizobacteria on the water-yield relationship and carotenoid production of processing tomatoes. HortScience 53(6): 816-822. doi: 10.21273/HORTSCI13048-18

Lott, W. L., Nery, J. P., Gallo, J. R., and Medcalf, J. C., 1956. Leaf analysis technique in coffee research. IBEC Research Institute 9: 21-24.

Mena-Violante, H. G., and Olalde-Portugal, V., 2007. Alteration of tomato fruit quality by root inoculation with plant growth-promoting rhizobacteria (PGPR): Bacillus subtilis BEB-13bs. Scientia Horticulturae 113(1): 103-106. https://doi.org/10.1016/j.scienta.2007.01.031

Mertens, D., 2005. AOAC Official Method 975.03. In: Metal in Plants and Pet Foods: Official Methods of Analysis, Horwitz, W. and G.W. Latimer (Eds.). 18th Edn., Chapter 3, AOAC-International Suite 500, 481. North Frederick Avenue, Gaitherburg, Maryland, USA., pp: 3- 4.

Mirshekari, B., Hokmalipour, S. S. R. S., Farahvash, F., and Ebadi-Khazine-Gadim, A., 2012. Effect of seed biopriming with plant growth promoting rhizobacteria (PGPR) on yield and dry matter accumulation of spring barley (Hordeum vulgare L.) at various levels of nitrogen and phosphorus fertilizers. Journal of Food, Agriculture and Environment 10: 314–320. 10.1234/4.2012.3377.

Nelson, L. M., 2004. Plant growth promoting rhizobacteria (PGPR): prospects for new inoculants. Crop Manage 3: 301–305. doi:10.1094/CM-2004-0301-05-RV

Nosheen, A., Naz, R., Tahir, A. T., Yasmin, H., Keyani, R., Mitrevski, B., Bano, A., Chin, S. T., Marriott, P. J., and Hussain, I., 2018. Improvement of safflower oil quality for biodiesel production by integrated application of PGPR under reduced amount of NP fertilizers. PloS one 13(8): e0201738. https://doi.org/10.1371/journal.pone.0201738

Padhye, S., and Cameron, A., 2007. Forcing asiatic lilies. Greenhouse Grower December, 46–50.

Pahari, A., Pradhan, A., Priyadarshini, S., Nayak, S. K., and Mishra, B. B., 2017. Isolation and characterization of plant growth promoting rhizobacteria from coastal region and their effect on different vegetables. International Journal of Science, Environment and Technology 6(5): 3002-3010. https://www.researchgate.net/publication/326552296

Parewa, H. P., Yadav, J., Rakshit, A., Meena, V. S., and Karthikeyan, N., 2014. Plant growth promoting rhizobacteria enhance growth and nutrient uptake of crops. Agriculture for Sustainable Development 2(2): 101-116.

Parlakova, F., 2014. Effects of nitrogen fixing and phosphate solubilizing bacteria on plant development, number of bulb, quality of bulb and mineral contents of tulip cultivars. MS Thesis Atatürk University, Graduate School of Natural and Applied Sciences, Erzurum-Turkey. https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSon ucYeni.jsp

Parlakova Karagöz, F., Dursun, A., Kotan, R., Ekinci, M., Yildirim, E., and Mohammadi, P., 2016. Assessment of the effects of some bacterial ısolates and hormones on corm formation and some plant properties in saffron (Crocus sativus L.). Ankara University Journal of Agricultural Sciences 22(4): 500-511.

Parlakova Karagöz F., and Dursun A. 2019a. A Study of Different Bacterial Formulations in Increasing the Nutrient Content of Bulb and Leaf of Tulips and Grown Soil Samples. Journal of Horticultural Science & Ornamental Plants 11 (1): 52-65. doi: 10.5829/idosi.jhsop.2019.52.65

Parlakova Karagöz, F., Dursun, A. 2019b.Assessment of Different PGPR Formulations as a Biological Fertilizer in Cultivation of Poinsettia (Euphorbia pulcherrima). Frontiers in Environmental Microbiology 5(2):48-59 doi: 10.11648/j.fem.20190502.12

Pérez-Montaño, F., Alías-Villegas, C., Bellogín, R. A., Del Cerro, P., Espuny, M. R., Jiménez-Guerrero, I., LópezBaena, F. J., Ollero, F. J., and Cubo, T., 2014. Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiological Research 69(5-6): 325- 336. https://doi.org/10.1016/j.micres.2013.09.011

Pii, Y., Graf, H., Valentinuzzi, F., Cesco, S., and Mimmo, T., 2017. Influence of plant growth-promoting rhizobacteria (PGPR) on the growth and quality of strawberries. miCROPE http://hdl.handle.net/10863/5088

Rees, A. R., 1969. Effect of bulb size on the growth of tulips. Annals of Botany 33: 133-142. https://doi.org/10.1093/oxfordjournals.aob.a084261

Roodbol, F., Louw, E., and Niederwieser, J. G., 2002. Effects of nutrient regime on bulb yield and plant quality of Lachenalia Jacq.(Hyacinthaceae). South African Journal of Plant and Soil 19(1): 23-26. https://doi.org/10.1080/02571862.2002.10634432

Sahu, B., Singh, J., Shankar, G., and Pradhan, A., 2018. Pseudomonas fluorescens PGPR bacteria as well as biocontrol agent: A review. International Journal of Chemical Studies 6(2): 01-07.

Scott, J. T., McCarthy M. J., Gardner. W. S., and Doyle, R. D., 2008. Denitrification, dissimilatory nitrate reduction to ammonium, and nitrogen fixation along a nitrate concentration gradient in a created freshwater wetland. Biogeochemistry 87(1): 99-111. https://doi.org/10.1007/s10533-007-9171-6

Sharaf-Eldin, M., Elkholy, S., Fernández, J. A., Junge, H., Cheetham, R., Guardiola, J., and Weathers, P., 2008. Bacillus subtilis FZB24® affects flower quantity and quality of saffron (Crocus sativus). Planta medica 74(10): 1316. doi: 10.1055/s-2008-1081293

Shen, J., Li, R., Zhang, F., Fan, J., Tang, C., and Rengel, Z., 2004. Crop yields, soil fertility and phosphorus fractions in response to long-term fertilization under rice monoculture system on a calcareous soil. Field Crops Research 86: 225-238. https://doi.org/10.1016/j.fcr.2003.08.013

Smigielska, M., Jerzy, M., and Krzyminska, A., 2014. The growth and flowering of Hyacinthus orientalis L. forced in pots under fluorescent light of different colours. Acta Agrobotanica 67(3): 75-82. doi : 10.5586/aa.2014.034

Soussi, A., Ferjani, R., Marasco, R., Guesmi, A., Cherif, H., Rolli, E., Mapelli, F., Ouzari, H. I., Daffonchio, D., and Cherif, A., 2016. Plant-associated microbiomes in arid lands: diversity, ecology and biotechnological potential. Plant and Soil 405(1-2), 357-370. https://doi.org/10.1007/s11104-015-2650-y

Van Die, J., Leeuwangh, P., and Hoekstra, S. M., 1970. Translocation of assimilates in Fritillaria imperialis L. 1. The secretion of 14c‐labelled sugars by the nectaries in relation to phyllotaxis. Acta Botanica Neerlandica 19(1): 16-23. https://doi.org/10.1111/j.1438- 8677.1970.tb00620.x

Wassink, E. C., 1965. Light intensity effects in growth and development of tulips in comparison with those in gladiolus. Meded. Landbhoogesch. Wageningen 65 (15): 1-21. 635.965.281.1: 635.965.282.6: 581.14.035.3

Xie, M. M., and Wu, Q. S., 2017. Mycorrhiza modulates morphology, color and duration of flowers in hyacinth. Biotechnology 16(3): 116‑122. https://scialert.net/abstract/?doi=biotech.2017.116.1 22

Zare, M., Ordookhani, K., and Alizadeh, O., 2011. Effects of PGPR and AMF on growth of two bred cultivars of tomato. Advances in Environmental Biology 58: 2177- 2181.

Kaynak Göster

299 193

Sayıdaki Diğer Makaleler

The Effect of Rosehip Seed Supplementation into Laying Hens Diets on Performance, Egg Quality Traits, Yolk Lipid Profile and Serum Parameters


Influence Factors Analysis of Farmers’ Participation in Agricultural Machinery Support Using Random Utility Model in the Agri Province of Turkey


Effects of Rhizobacteria on Plant Development, Quality of Flowering and Bulb Mineral Contents in Hyacinthus orientalis L.


The Evaluation of the Antibacterial Activity of Vetiveria zizanioides (L.) Nash Grown in Giresun, Turkey

Derya EFE

Determination of Some Biological Control Agents Against Alternaria Fruit Rot in Quince


Soil Erosion Risk Assessment due to Land Use/Land Cover Changes (LULCC) in Bulgaria From 1990 to 2015


Effects of Some Stabilizers on the Textural Properties of Set-Type Yogurt


Comparison of Spray Transfer and Penetration of Different Hydraulic Nozzles at Low Application Volume


Organic Agriculture Potential of Eastern Black Sea Region


Determination of Yield, Yield Components and Oil Ratio of Some Winter Canola (Brassica napus L.) Cultivars under Semi-Arid Conditions