Travmatik Glob Yaralanmalarında Orbita Bilgisayarlı Tomografi Bulgularının Analizi ve Frekansı: Glob Yaralanmalarından Ön Kamara Derinliği ve Optik Sinir Kılıfı Çapı Etkileniyor mu?

Amaç: Çalışmadaki amacımız, göz küresi ve diğer orbital yaralanmalardaki karakteristik bilgisayarlı tomografi BT bulgularını değerlendirmek, ön kamara derinliğindeki değişiklikleri araştırmak ve göz yaralanmalarında optik sinir kılıf çapının etkilenip etkilenmediğini belirlemektir.Gereç ve Yöntemler: Travmaya bağlı orbita BT çekilen 691 hasta acil radyoloji konusunda deneyimli 2 radyoloji uzmanı tarafından retrospektif olarak analiz edildi. Üç ve 5. mm’lerde optik sinir kılıf çapları ve ön kamara derinlikleri oftalmolojik muayene bulgularından habersiz olarak ölçüldü. İki gözlemcinin ölçümünün güvenilirliği gözlemciler arası korelasyon analizleri ile değerlendirilmiştir. Bulgular: Çalışma grubunda 486 erkek ve 205 kadın vardı. 55 % 8 hastada göz yaralanması saptandı. Künt travmalar tüm orbital travmaların % 92'sini oluşturmaktaydı ve künt travmaların % 3,5'inde göz yaralanması saptandı. Kapalı tip göz yaralanmalarında göz küresi hacmi normal olup, duvar defekti saptanmazken lens dislokasyonu ve vitröz hemoraji en sık karşılaşılan BT bulgularıydı. Ön kamara derinliği ve optik sinir kılıf çapı ölçümlerinde gözlemciler arası uyum mükemmeldi. Yaralanan gözde ön kamara derinliği normal göze göre düşüktü p=0.001 . Göz yaralanması açısından, ön kamara derinliğinde en iyi kesim noktası 2.475 mm olarak hesaplandı. Optik sinir kılıf çapı ölçümlerinde yaralanmış ve normal göz arasında istatistiksel olarak anlamlı bir fark yoktu. Sonuç: Oküler yaralanmaların hızlı ve doğru tanısında anahtar yöntem oftalmolojik muayenedir. Ciddi yüz yaralanması gibi oftalmolojik muayenenin uygun yapılamadığı durumlarda, radyolojik görüntüleme, oftalmolojik muayene ile kombine edildiğinde oküler yaralanma tanısında güçlü bir araç hâline gelir. Kapalı göz yaralanmalarında göz konturları genellikle normal olup lensdeki şekil ve pozisyon değişiklikleri ve 2,5 mm’den daha dar ön kamara göz yaralanması tanısı açısından anlamlıdır

Analysis and Frequency of Computed Tomography Findings in Traumatic Globe Injuries: Are the Anterior Chamber Depth and Optic Nerve Sheath Diameter Affected in Globe Injuries?

Objective: Our aim was to evaluate the characteristic computed tomography CT findings in globe and other orbital injuries, investigate the changes in the anterior chamber depth ACD , and determine whether globe injuries affect the optic nerve sheath diameter ONSD .Material and Methods: A total of 691 patients who underwent orbital CT due to orbital trauma were retrospectively analyzed. Two radiologists evaluated the CT images and measured the ONSD at 3 mm and 5 mm posterior to the globe for both eyes in addition to the ACD, without knowledge of ophthalmologic examination findings. The reliability of the measurement of the two observers was evaluated by inter-class correlation ICC analyses. Results: There were 486 men and 205 women in the study group. Globe injuries were detected in 55 patients 8% . Blunt traumas constituted 92% of all orbital traumas, and globe injuries were detected in 3.5% of blunt traumas. Lens dislocation and vitreous hemorrhage were the most common CT findings in closed-globe injuries. ICC between the observers was found to be excellent in ONSD and ACD measurements. ACD was lower in globe rupture p=0.001 . The best cut-off value for ACD for detecting globe rupture was 2.475 mm. There was no statistically significant difference between the injured and non-injured globes on ONSD measurement. Conclusion: It is well known that ophthalmologic examination is the key method for the rapid and accurate diagnosis of most ocular injuries. In cases where ophthalmological examination cannot be performed properly such as severe facial injury, radiological imaging becomes a powerful tool in the diagnosis of ocular injury when combined with ophthalmological examination. Globe contours in closed-globe injuries are generally normal, and the identification of changes in the shape and position of the lens and an anterior chamber depth lower than 2.5 mm are significant for globe rupture

___

  • Sung EK, Nadgir RN, Fujita A, Siegel C, Ghafouri RH, Traband A, Sakai O. Injuries of the globe: What can the radiologist offer? Radiographics 2014; 34(3):764-76.
  • Kubal WS. Imaging of orbital trauma. Radiographics 2008; 28(6):1729-39.
  • Dunkin JM, Crum AV, Swanger RS, Bokhari SA. Globe trauma. Semin Ultrasound CT MR 2011; 32(1):51-6.
  • Yuan WH, Hsu HC, Cheng HC, Guo WY, Teng MM, Chen SJ, Lin TC. CT of globe rupture: Analysis and frequency of findings. AJR Am J Roentgenol 2014; 202(5):1100-7.
  • Betts AM, O’Brien WT, Davies BW, Youssef OH. A systematic approach to CT evaluation of orbital trauma. Emerg Radiol 2014; 21(5):511-31.
  • Weissman JL, Beatty RL, Hirsch WL, Curtin HD. Enlarged anterior chamber: CT finding of a ruptured globe. AJNR Am J Neuroradiol 1995; 16(Suppl 4):936-8.
  • Kim SY, Lee JH, Lee YJ, Choi BS, Choi JW, In HS, Kim SM, Baek JH. Diagnostic value of the anterior chamber depth of a globe on CT for detecting open-globe injury. Eur Radiol 2010; 20:1079-84.
  • Sarrazin L, Averbukh E, Halpert M, Hemo I, Rumelt S. Traumatic pediatric retinal detachment: A comparison between open and closed globe injuries. Am J Ophthalmol 2004; 137:1042-9.
  • Yeung L, Chen TL, Kuo YH, Chao AN, Wu WC, Chen KJ, Hwang YS, Chen Y, Lai CC. Severe vitreous hemorrhage associated with closed-globe injury. Graefes Arch Clin Exp Ophthalmol 2006; 244(1):52-7.
  • Chen KJ, Sun MH, Sun CC, Wang NK, Hou CH, Wu AL, Wu WC, Lai CC. Traumatic maculopathy with massive subretinal hemorrhage after closed-globe injuries: Associated findings, management, and visual outcomes. Ophthalmol Retina 2019; 3(1):53-60.
  • Sekhon MS, Griesdale DE, Robba C, McGlashan N, Needham E, Walland K, Shook AC, Smielewski P, Czosnyka M, Gupta AK, Menon DK. Optic nerve sheath diameter on computed tomography is correlated with simultaneously measured intracranial pressure in patients with severe traumatic brain injury. Intensive Care Med 2014; 40(9):1267-74.
  • Legrand A, Jeanjean P, Delanghe F, Peltier J, Lecat B, Dupont H. Estimation of optic nerve sheath diameter on an initial brain computed tomography scan can contribute prognostic information in traumatic brain injury patients. Crit Care 2013; 17(2):R61.
  • Parlak S, Beşler MS. Ankara bombing: Distribution of injury patterns with radiological imaging. Pol J Radiol 2020; 85:90-6.
  • Bodanapally UK, Addis H, Dreizin D, Reddy AK, Margo JA, Archer-Arroyo KL, Feldman S, Saboury B, Sudini K, Saeedi O. Prognostic predictors of visual outcome in open globe injury: Emphasis on facial CT findings. AJNR Am J Neuroradiol 2017; 38(5):1013-8.
  • Lee SH, Yun SJ. Optic nerve sheath diameter on facial CT: A tool to predict traumatic brain injury. Eur J Trauma Emerg Surg 2020; 46(4):879-85.
  • Magarakis M, Mundinger GS, Kelamis JA, Dorafshar AH, Bojovic B, Rodriguez ED. Ocular injury, visual impairment, and blindness associated with facial fractures: A systematic literature review. Plast Reconstr Surg 2012; 129(1):227-33.
  • Cook T. Ocular and periocular injuries from orbital fractures. J Am Coll Surg 2002; 195(6):831‐4.
  • Shere JL, Boole JR, Holtel MR, Amoroso PJ. An analysis of 3599 midfacial and 1141 orbital blowout fractures among 4426 United States Army Soldiers, 1980-2000. Otolaryngol Head Neck Surg 2004; 130(2):164-70.
  • He D, Blomquist PH, Ellis E 3rd. Association between ocular injuries and internal orbital fractures. J Oral Maxillofac Surg 2007; 65(4):713-20.
Akdeniz Tıp Dergisi-Cover
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2015
  • Yayıncı: Akdeniz Üniversitesi Tıp Fakültesi