Ozmo- ve hidropriming uygulamalarının bezelye (Pisum sativum L. cv. Winner) tohumlarının çimlenme performansı ve termal zaman ihtiyacı üzerine etkisi

Çeşitli priming uygulamalarının ve priming uygulamasürelerinin bezelye (Pisum sativum L. cv. Winner)tohumlarının çimlenme performansı üzerindeki etkisiaraştırılmıştır. Tohumlar ozmopriming uygulamasındapolietilen glikol (PEG 6000) (-0.5, -1.0 ve -1.5 bar) veyamannitol (%1, %2 ve %3) solüsyonunda; hidropriminguygulamasında ise su içerisinde 12 veya 24 saat süreyleolmak üzere 25 °C de karanlık koşullardabekletilmişlerdir. Priming uygulanmış tohumlar 5 ile 32± 0.5 °C arasında değişen on farklı sıcaklık derecesindeçimlenme testlerine alınmışlardır. Priming uygulamalarıçimlenme oranı üzerine önemli etkide bulunmamıştır.Ancak, ozmo- ve hidropriming uygulamaları çimlenmehızını artırıp termal zaman ihtiyacını önemli seviyedeazaltmış ve ayrıca test edilen bazı sıcaklık derecelerindeeş zamanlı çimlenmeyi teşvik etmiştir. Uygulamalarabağlı olarak, termal zaman ihtiyacındaki azalma %10,%50 ve %90 çimlenme için sırasıyla 3.4 °C gün ile 11.3°C gün, 6.6 °C gün ile 17.4 °C gün ve 11.6 °C gün ile 27.5°C gün arasında değişmiştir. Priming uygulama süresinin12 saatten 24 saate uzatılması, %50 çimlenme zamanı vetermal zaman ihtiyacı üzerine çoğunlukla olumsuz etkiyapmıştır. En iyi sonuçlar -0.5 bar PEG, %1 mannitol vesu (hidropriming) uygulanmış tohumlardan elde edilmişve 12 saat süreyle bezelye tohuma yapılacak buuygulamaların daha iyi bir çimlenme için tavsiyeedilebileceği kanısına varılmıştır.

Osmo- and hydropriming enhance germination rate and reduce thermal time requirement of pea ( Pisum sativum L. cv. Winner) seeds

The effects of various seed priming treatments andseed soaking durations on germination performance ofpea (Pisum sativum L. cv. Winner) seeds wereexamined. Seeds were osmoprimed in polyethyleneglycol (PEG 6000) (-0.5, -1.0 and -1.5 bar) or inmannitol (1%, 2% and 3%) and hydroprimed withwater for 12 or 24 h at 25 ± 0.5 °C in darkness. Primedseeds were subjected to germination tests at tendifferent constant temperatures ranging from 5 to 32 ±0.5 °C. Priming treatments had no significant effect ongermination percentage. But, osmo- and hydroprimigtreatments improved germination rate and decreasedthermal time requirements significantly and inducedmore synchronous germination at some of thetemperatures tested. Reductions in thermal timerequirements ranged between 3.4 °C d and 11.3 °C d,6.6 °C d and 17.4 °C d, and 11.6 °C d and 27.5 °C d for10%, 50% and 90% germination, respectively. Ascompared with the priming duration of 12 h, primingduration of 24 h had generally negative effect on the50% germination time and thermal time requirement.Among the osmopriming treatments, seeds treatedwith -0.5 bar solution of PEG and 1% solution ofmannitol, and also hyropriming gave the best results.Consequently, above osmo- and hydroprimingtreatments for 12 h might be recommended for bettergermination of pea.

___

  • Al-Karaki, G.N., 1998. Response of wheat and barley during germination to seed osmopriming at different water potentials. Journal of Agronomy and Crop Science, 181: 229-235.
  • Almansouri, M., Kinet, J.M., Lutts, S., 2001. Effect of salt and osmotic stresses on germination in durum wheat ( Triticum durum Desf.). Plant and Soil, 231: 243- 254.
  • Benamar, A., Tallon, C., Macherel, D., 2003. Membrane integrity and oxidative properties of mitochondria isolated from imbibing pea seeds after priming or accelerated ageing. Seed Science Research, 13: 35- 45.
  • Bierhuizen, F., Wagenvoort, W.A., 1974. Some aspects of seed germination in vegetables. I. The determination and application of heat sums and minimum temperature for germination. Scientia Horticulturae, 2: 213-219.
  • Bray, C.M., 1995. “Biochemical Processes During the Osmopriming of Seeds, 767-789”. In: Seed development and germination (Eds. J. Kigel & G. Galili). Marcel Dekker, New York.
  • Bray, C.M., Davison, P.A., Ashraf, M., Taylor, R.M., 1989. Biochemical changes during priming of leek seeds. Annals of Botany, 63: 185-193.
  • Cheng, Z., Bradford, K.J., 1999. Hydrothermal time analysis of tomato seed germination responses to priming treatments. Journal of Experimental Botany, 50: 89- 99.
  • Covell, S., Ellis, R.H., Roberts, E.H., Summerfield, R.J., 1986. The influence of temperature on seed germination rate of legumes. I. A comparison of chickpea, lentil, soybean and cowpea at constant temperatures. Journal of Experimental Botany, 37: 705-715.
  • Dahal, P., Bradford, K.J., Jones, R.A., 1990. Effects of priming and endosperm integrity on seed germination rates of tomato genotypes. I. Germination at suboptimal temperature. Journal of Experimental Botany, 41: 1431-1439.
  • Danneberger, T.K., McDonald, M.B., Geron, C.A., Kumari, P., 1992. Rate of germination and seedling growth of perennial ryegrass seed following osmoconditioning. Hortscience, 27: 28-30.
  • Davison, P.A., Bray, C.M., 1991. Protein synthesis during osmopriming of leek ( Allium porrum L.) seeds. Seed Science Research, 1: 29-35.
  • Dell’Aquila, A., Bewley, J.D., 1989. Protein synthesis in the axes of polyethylene glycol treated pea seeds and during subsequent germination. Journal of Experimental Botany, 40: 1001-1007.
  • Dumur, D., Pilbeam, C., Craigon, J.J., 1990. Use of the Weibull function to calculate cardinal temperatures in faba bean. Journal of Experimental Botany, 41: 1423-1430.
  • Elkoca, E., Haliloglu, K., Esikten, A., Ercisli, S., 2007. Hydro- and osmopriming improve chickpea germination. Acta Agriculturae Scandinavica Section B-Soil and Plant Science, 57: 193-200.
  • Farooq, M., Basra, S.M.A., Rehman, H., Saleem, B.A., 2008. Seed priming enhances the performance of late sown wheat (Triticum aestivum L.) by improving chilling tolerance. Journal of Agronomy and Crop Science, 194: 55-60.
  • Garcia-Huidobro, J., Monteith, J.L., Squire, G.R., 1982. Time, temperature and germination of pearl millet (Pennisetum typhoides S. and H.). I. Constant temperature. Journal of Experimental Botany, 33: 288-296.
  • Ghassemi-Golezani, K., Sheikhzadeh-Mosaddegh, P., Valizadeh, M., 2008. Effects of hydro-priming duration and limited irrigation on field performance of chickpea. Research Journal of Seed Science, 1: 34-40.
  • Ghassemi-Golezani, K., Chadordooz-Jeddi, A., Nasrollahzadeh, S., Moghaddam, M., 2010. Effects of hydro-priming duration on seedling vigour and grain yield of pinto bean ( Phaseolus vulgaris L.) cultivars. Notulae Botanicae Horti Agrobotanici Cluj, 38: 109-113.
  • Halpin-Ingham, B., Sundstrom, F.J., 1992. Pepper seed water content, germination response and respiration following priming treatments. Seed Science and Technology, 20: 589-596.
  • Hardegree, S.P., Emmerich, W., 1992. Effect of matric priming duration and priming water potential on germination of four grasses. Journal of Experimental Botany, 43: 233-238.
  • Hardegree, S.P., Van Vactor, S.S., 2000. Germination and emergence of primed grass seeds under field and simulated-field temperature regimes. Annals of Botany, 85: 379-390.
  • Hardegree, S.P., Van Vactor, S.S., Pierson, F.B., Palmquist, D.E., 1999. Predicting variable-temperature response of non-dormant seeds from constant- temperature germination data. Journal of Range Management, 52: 83-91.
  • Hardegree, S.P., Jones, T.A., Van Vactor, S.S., 2002. Variability in thermal response of primed and non- primed seeds of squirreltail [ Elymus elymoides (Raf.) Swezey and Elymus multisetus (J.G. Smith) M.E. Jones]. Annals of Botany, 89: 311-319.
  • Harris, D., Joshi, A., Khan, P.A., Gothkar, P., Sodhi, P.S., 1999. On-farm seed priming in semi-arid agriculture: development and evaluation in maize, rice and chickpea in India using participatory methods. Experimental Agriculture, 35: 15-29.
  • Heydecker, W., Gibbins, B., 1978. The ‘priming’ of seeds. Acta Horticulturae, 83: 213-215.
  • Kader, M.A., Jutzi, S.C., 2002. Temperature, osmotic pressure and seed treatments influence imbibition rates in sorghum seeds. Journal of Agronomy and Crop Science, 188: 286-290.
  • Kaur, S., Gupta, A.K., Kaur, N., 2002. Effect of osmo- and hydropriming of chickpea seeds on seedling growth and carbohydrate metabolism under water deficit stress. Plant Growth Regulation, 37: 17-22.
  • Kaya, G., Demir, İ., Tekin, A., Yaşar, F., Demir, K., 2010. Priming uygulamasının biber tohumlarının stres sıcaklıklarında çimlenme, yağ asitleri, şeker kapsamı ve enzim aktivitesi üzerine etkisi. Tarım Bilimleri Dergisi, 16: 9-16
  • Khalil, S.K., Mexal, J.G., Murray, L.W., 2001. Germination of soybean seed primed in aerated solution of polyethylene glycol (8000). Online Journal of Biological Science, 1: 105-107.
  • McDonald, M.B., 1999. Seed deterioration: physiology, repair and assessment. Seed Science and Technology, 27: 177-237.
  • McDonald, M.B., 2000. “Seed Priming, 287-325”. In: Seed Technology and Its Biological Basis (Eds. M. Black & J.D. Bewley). Sheffield Academic Press, Sheffield, UK.
  • Michel, B.E., Kaufmann, M.R., 1973. The osmotic potential of polyethylene glycol 6000. Plant Physiology, 51: 914-916.
  • Mohamed, H.A., Clark, J.A., Ong, C.K., 1988. Genotypic differences in the temperature responses of tropical crops. II. Seedling emergence and leaf growth of groundnut ( Arachis hypogaea L.) and pearl millet ( Pennisetum typhoides S & H.). Journal of Experimental Botany, 39: 1129-1135.
  • Murungu, F.S., Nyamugafata, P., Chiduza, C., Clark, L.J., Whalley, W.R., 2003. Effects of seed priming, aggregate size and soil matric potential on emergence of cotton ( Gossypium hirsutum L.) and maize ( Zea mays L). Soil and Tillage Research, 74: 161-168.
  • Murray, G.A., 1989. Osmoconditioning carrot seed for improved emergence. Hortscience, 24: 701.
  • Musa, A.M., Harris, D., Johansen, C., Kumar, J., 2001. Short duration chickpea to replace fallow after aman rice: the role of on-farm seed priming in the High Barind Tract of Bangladesh. Experimental Agriculture, 37: 509-521.
  • Okçu, G., Kaya, M.D., Atak, M., 2005. Effects of salt and drought stress on germination and growth of pea (Pisum sativum L.). Turkish Journal of Agriculture and Forestry, 29: 237-242.
  • Perry, D.A., Harrison, J.G., 1970. The deleterious effect of water and low temperature on germination of pea seed. Journal of Experimental Botany, 21: 504-512.
  • Powell, A.A., 1985. “Impaired Membrane Integrity – A Fundamental Cause of Seed – Quality Differences in Peas, 383-394”. In: The Pea Crop: A Basis for Improvement (Eds. P.D. Hebblethwaite, M.C. Heath & T.C.K. Dawkins). Robert Hartnoll Ltd., Bodmin, Cornwall.
  • Rowland, G.G., Gutsa, L.V., 1977. Effects of soaking, seed moisture content, temperature and seed leakage on germination of faba beans (Vicia faba ) and peas (Pisum sativum ). Canadian Journal of Plant Science, 57: 401-406.
  • Sağlam, S., Day, S., Kaya, G., Gürbüz, A., 2010. Hydropriming increases germination of lentil ( Lens culinaris Medik.) under water stress. Notulae Scientia Biologicae, 2: 103-106.
  • Sivritepe, H.O., Dourado, A.M., 1995. The effect of priming treatments on the viability and accumulation of chromosomal damage in aged pea seeds. Annals of Botany, 75: 165-171.
  • Yan, Y.T., Liang, W.T., Zheng, G.H., Tang, P.S., 1989. Effect of low temperature imbibition on mitochondrion respiration and phosphorylation of PEG primed soybean seed. Acta Botanica Sinica, 31: 441-448.
  • Zheng, G.H., Wilen, R.W., Slinkard, A.E., Gusta, L.V., 1994. Enhancement of canola seed germination and seedling emergence at low temperature by priming. Crop Science, 34: 1589-1593.
Akademik Ziraat Dergisi-Cover
  • ISSN: 2147-6403
  • Yayın Aralığı: 2
  • Başlangıç: 2012
  • Yayıncı: Ordu Üniversitesi Ziraat Fakültesi