Işığın Echinacea purpurea L. kallus kültüründe alkamide, kafeik asit türevleri ve echinacoside biyosentezi üzerine etkisi

Işık sadece fotosentez, büyüme ve gelişmede etkili değildir, aynı zamanda birincil ve ikincil metabolizma ürünlerinin biyosentezinde de önemli bir rol oynamaktadır. Bu araştırmanın amacı ışığın Echinacea purpurea L. hücre süspansiyon kültüründe alkamide, kafeik asit türevleri ve echinacoside biyosentezine etkisini tespit etmektir. Steril bitkilerin gövde eksplantlarından kalluslar elde edilmiş ve 1.0 mg/L BAP ve 2.0 mg/L NAA ilave edilmiş B5 ortamında kültüre alınmışlardır. Daha sonra, 8 günlük hücre kültürleri, aydınlık ve karanlık ortamlarda inkübe edilmiştir ve hücreler, üç günde bir olmak üzere, toplamda beş kez hasat edilmiştir. Alkamide, kafeik asit türevleri ve echinacoside içerikleri HPLC ile belirlenmiştir. Alkamide, kaftarik asit ve echinacoside içeriği ışık uygulamalarıyla düzenli olarak artmıştır. Işık uygulaması ile alkamide içeriği karanlık ortama göre ortalama olarak %57 artmıştır. En yüksek alkamide birikimi ışıkta 12 günlük inkübasyona maruz bırakılan hücre kültüründe tespit edilmiş ve karanlık ortama göre 2.11 katlık bir artış gerçekleşmiştir. Hücre kültürlerinin 12 gün süreyle ışığa maruz bırakılması, kaftarik asit ve echinacoside birikiminde %70’lik ve %63'lük bir artışa yol açmıştır. Bu araştırma, ışık uygulamasının Echinacea purpurea L. hücre süspansiyon kültüründe bazı önemli fitokim yasalların artırılmasında büyük bir potansiyele sahip olduğunu göstermiştir.

Effect of light on biosynthesis of alkamide, caffeic acid derivatives and echinacoside in Echinacea purpurea L. callus cultures

Light is not only effective in photosynthesis, growthand development, but also play an important role inbiosynthesis of primary and secondary metabolites.The present research was aimed to determine effectof light on biosynthesis of alkamide, caffeic acid derivatives and echinacoside in cell suspension cultures of Echinacea purpurea L. Stem explants derivedfrom sterile plants were subjected to callus culture ina B5 media supplemented with 1.0 mg/L BAP and2.0 mg/L NAA. Afterward, 8-day cell cultures wereincubated in light and dark environments and cellharvesting, with a three-day interval, was carried outfive times. The contents of alkamide, caffeic acidderivatives and echinacoside were determined usingHPLC. Alkamide, caftaric acid and echinacoside content increased regularly with light application. Lightapplication increased alkamide content by 57%, asan average, compared to darkness. The cell culturesexposed to 12 days of incubation in light producedthe highest alkamide content, with a 2.11-fold increase, compared to dark. Subjecting the cell culturesto light for 12 days resulted in 70% and 63% increases in caftaric acid and echinacoside. This studyshowed that light application in Echinacea purpureaL. cell suspension culture had a great potential forincreasing some important phytochemicals.

___

  • Ahmad, N., Rab, A., Ahmad, N. 2016. Light-induced biochemical variations in secondary metabolite production and antioxidant activity in callus cultures of Stevia rebaudiana (Bert). Journal of Photochemistry and Photobiology B: Biology, 154: 51-56.
  • Ali, M., Abbasi, B.H. 2014. Light-induced fluctuations in biomass accumulation, secondary metabolites production and antioxidant activity in cell suspension cultures of Artemisia absinthium L. Journal of Photochemistry and Photobiology B: Biology, 140: 223- 227.
  • Balcerowicz, M., Fittinghoff, K., Wirthmueller, L., Maier, A., Fackendahl, P., Fiene, G., Koncz, C., Hoecker, U. 2011. Light exposure of Arabidopsis seedlings causes rapid de-stabilization as well as selective post-translational inactivation of the repressor of photomorphogenesis SPA2. Plant Journal, 65: 712– 723.
  • Bennett, R.N., Wallsgrove R.M. 1994. Secondary metabolites in plant defense mechanisms. New Phytologist, 127:617-33.
  • Chan, L.K., Koay, S.S., Boey, P.L., Bhatt, A. 2010. Effects of abiotic stress on biomass and anthocyanin production in cell cultures of Melastoma malabathricum. Biological Research, 43:127-135.
  • Chaves, I., Pokorny, R., Byrdin, M., Hoang, N., Ritz, T., Brettel, K., Ahmad, M. 2011. The cryptochromes: blue light photoreceptors in plants and animals. Annual Review of Plant Biology, 62: 335-364.
  • El-Aal, M.S.A., Rabie, K.A.E., Manaf Hossam, H. 2016. The Effect of UV-C on Secondary Metabolites Productıon of Echinacea purpurea Culture in Vitro. Environmental Science & Technology, 11(2): 465- 483.
  • Gehlot, A., Arya, I.D., Arya, S. 2017. Regeneration of Complete Plantlets from Callus Culture of Azadirachta indica A. Juss using Immature Flower Buds. Advances in Forestry Science, 4(1): 71-76.
  • Georgieva, L., Ivanov, I., Marchev, A., Aneva, I., Denev, P., Georgiev, V., Pavlov, A. 2015. Protopine production by Fumaria cell suspension cultures: effect of light. Applied Biochemistry and Biotechnology, 176(1): 287-300.
  • Gualandi, R.J., Augé, R.M., Kopsell, D.A., Ownley, B.H., Chen, F., Toler, H.D., Gwinn, K.D. 2014. Fungal mutualists enhance growth and phytochemical content in Echinacea purpurea. Symbiosis, 63(3): 111-121.
  • Halliday, K.J., Fankhauser, C. 2003. Phytochrome-hormonal signaling networks. New Phytologist, 157(3): 449- 463.
  • Heijde, M., Ulm, R. 2012. UV-B photoreceptor-mediated signaling in plants. Trends in Plant Science, 17(4): 230-237.
  • Kami, C., Lorrain, S., Hornitschek, P., Fankhauser, C. 2010. Chapter two-light-regulated plant growth and development. Current Topics in Developmental Biology, 91: 29-66.
  • Khan, M.A., Abbasi, B.H., Ahmed, N., Ali, H. 2013. Effects of light regimes on in vitro seed germination and silymarin content in Silybum marianum. Industrial Crops and Products, 46: 105-110.
  • Laloue, M., Courtois, D., Manigault, P. 1980. Convenient and rapid fluorescent staining of plant cell nuclei with “33258” Hoechst. Plant Science Letter, 17: 175-179.
  • Liu, R., Li, W., Sun, L.Y., Liu, C.Z. 2012. Improving root growth and cichoric acid derivatives production in hairy root culture of Echinacea purpurea by ultrasound treatment. Biochemical Engineering Journal, 60: 62-66.
  • Manayi A., Mahdi, V., Soodabeh, S. 2016. Echinacea purpurea: Pharmacology, phytochemistry and analysis methods. Pharmacognosy Reviews, 9(17): 63.
  • Moroff, G., Eich, J., Dabay, M. 1994. Validation of use of the nageotte: hemocytometer to count low levels of white cells in white cell reduced platelet components. Transfusion, 34: 35-38.
  • Murthy, H. N., Dandin, V.S., Zhong, J.J., Paek, K.Y. 2014. Strategies for enhanced production of plant secondary metabolites from cell and organ cultures. In Production of Biomass and Bioactive Compounds Using Bioreactor Technology, eds. K.Y.
  • Paek, H.N. Murthy and J.J. Zhong, pp. 471-508. Springer, Dordrecht, the Netherlands.
  • Romero, F.R., Delate, K., Kraus, G.A., Solco, A.K., Murphy, P.A., Hannapel, D.J. 2009. Alkamide production from hairy root cultures of Echinacea. In Vitro Cellular & Developmental Biology Plant, 45(5): 599- 604.
  • Shalitin, D., Yang, H., Mockler, T.C., Maymon, M., Guo, H., Whitelam, G.C., Lin, C. 2002. Regulation of Arabidopsis cryptochrome 2 by blue-light-dependent phosphorylation. Nature, 417(6890): 763-767.
  • Shohael, A.M., Ali, M.B., Yu, K.W., Hahn, E.J., Islam, R., Paek, K.Y. 2006. Effect of light on oxidative stress, secondary metabolites and induction of antioxidant enzymes in Eleutherococcus senticosus somatic embryos in bioreactor. Process Biochemistry, 41(5): 1179-1185.
  • Sreelakshmi, Y., Sharma, R. 2008. Differential regulation of phenylalanine ammonia lyase activity and protein level by light in tomato seedlings. Plant Physiology and Biochemistry, 46(4): 444-451.
  • Srivastava, P., Sisodia, V., Chaturvedi, R. 2011. Effect of culture conditions on synthesis of triterpenoids in suspension cultures of Lantana camara L. Bioprocess and Biosystems Engineering, 34(1): 75-80.
  • Tariq, U., Ali, M., Abbasi, B.H. 2014. Morphogenic and biochemical variations under different spectral lights in callus cultures of Artemisia absinthium L. Journal of Photochemistry and Photobiology B: Biology, 130: 264-271.
  • Weidler, G., Zur Oven-Krockhaus, S., Heunemann, M., Orth, C., Schleifenbaum, F., Harter, K., Hoecker, U., Batschauer, A. 2012. Degradation of Arabidopsis CRY2 is regulated by SPA proteins and phytochrome A. Plant Cell, 24: 2610–2623.
  • Winkel-Shirley, B. 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology, 126(2): 485-493.
  • Wu, C.H., Murthy, H.N., Hahn, E.J., Paek, K.Y. 2007. Largescale cultivation of adventitious roots of Echinacea purpurea in airlift bioreactors for the production of chichoric acid, chlorogenic acid and caftaric acid. Biotechnology Letters, 29(8): 1179-1182.
  • Xu, C.G., Tang, T.X., Chen, R., Liang, C.H., Liu, X.Y., Wu, C.L., Wu, H.A. 2014. A comparative study of bioactive secondary metabolite production in diploid and tetraploid Echinacea purpurea (L.) Moench. Plant Cell, Tissue and Organ Culture (PCTOC), 116(3): 323-332.
  • Zhao, S.Z., Sun, H.Z., Chen, M., Wang, B.S. 2010. Lightregulated betacyanin accumulation in euhalophyte Suaeda salsa calli. Plant Cell, Tissue and Organ Culture (PCTOC), 102(1): 99-107.
Akademik Ziraat Dergisi-Cover
  • ISSN: 2147-6403
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2012
  • Yayıncı: Ordu Üniversitesi Ziraat Fakültesi