Yenilebilir Tohum Filizlerinin Mikrobiyal Güvenliği

Baklagiller, turp, buğday, yonca ve brokoli gibi birçok bitki tohumunun çimlendirilmesiyle elde edilen yenilebilir filizler, tohumlarına göre daha yüksek düzeyde esansiyel amino asit, vitamin, mineral ve diğer bazı fitokimyasalları içermeleri nedeniyle fonksiyonel gıda olarak kabul edilmektedirler. Ancak hiçbir işlem görmemiş tohumlar, üretildikleri şartlara göre çok sayıda ve farklı türde patojen veya saprofit mikroorganizmayı da içerebilmektedirler. Özellikle filiz üretimi esnasında herhangi bir mikrobiyal inaktivasyon işleminin uygulanmaması, mevcut mikroorganizmaların çimlendirme esnasında yüksek düzeylere ulaşmasına neden olmakta ve filizleri mikrobiyolojik olarak tehlikeli hale getirebilmektedir. Günümüze kadar tüm dünyada tohum filizlerinden Salmonella ve Escherichia coli O157:H7 gibi tehlikeli patojenlerin izole edildiği birçok çalışma mevcuttur. Bu nedenle yenilebilir filizlerin mikrobiyal riskinin azaltılabilmesi amacıyla kimyasal dezenfeksiyon, ışınlama ve ısıl işlem gibi yöntemler veya bunların çeşitli kombinasyonları denenmiş, ancak filizlerdeki tüm patojenleri etkili bir şekilde yok edecek iyi bir yöntem ortaya konulamamıştır. Bu makalede farklı tohumların çimlendirilmesiyle elde edilen filizlerin mikroflorası ve mevcut mikroorganizma yükünü azaltmak amacıyla yapılan çalışmalar özetlenmiştir

Microbial Safety of Edible Seed Sprouts

Edible seed sprouts produced by germinating some plant seeds like legumes, radish, wheat, alfalfa and broccoli, are generally considered as a functional food due to their high contents of essential amino acid, vitamin, mineral and some phytochemical in comparison to their seeds. However, unprocessed seeds and grains may contain a number of different species of pathogen and saprophytic microorganism. These can grow rapidly during sprouting since no microbial inactivation treatment take place before sprouting, and this makes sprouts microbiologically unsafe. There have been numerous studies which show the presence of well known pathogens like Salmonella and Escherichia coli O157:H7 on sprouts. In order to eliminate microbial risk of sprouts, various techniques such as chemical disinfection, irradiation and heat treatment or their combinations were utilized but an effective method still needs be developed to remove all pathogens. In this article, studies for the detection of microflora of edible sprouts of various seeds and as well as the research on the reduction of microbial load were reviewed

___

  • CMPA, 2003. Reporting of diet, nutrition and food safety (1995-2003). Center for Media and Public Affairs, Washington, 33.
  • Sarkar, S. 2007. Functional foods as self-care and complementary medicine. Nutrition and Food Science, 37: 160-167.
  • Penàs, E., Gómez, R., Frías, J., Vidal-Valverde, C., 2009. Efficacy of combinations of high pressure treatment, compounds to improve the microbiological quality of alfalfa seeds for sprout production. Food Control, 20: 31-39. and antimicrobial
  • Öztürk, İ., 2008. Çimlendirilmiş buğday tanesinin kimyasal özelliklerinin belirlenmesi ve doğal gıda katkı maddesi olarak değerlendirilme imkanlarının araştırılması. Yüksek Üniversitesi, Fen Bilimleri Enstitüsü, Kayseri, 71 s.
  • Lorenz, K., 1980. Cereal sprout: composition, nutritive value, food applications. CRC-Critical Reviews Food Science Nutrition, 13 (4): 353-385.
  • Finney, P.L., 1985. Effect of germination on cereal and legume nutrients changes and food or feed value: comprehesive review. Recent Advances of Phytochemistry, 17: 229-308.
  • Yang, F., Basu, T.K., Ooraikul, B., 2001. Studies on germination condition and antioxidant contents of wheat grain. International Journal of Food Science Nutrition, 52: 319-330.
  • Yetim, H, Öztürk, İ., Törnük, F., Sağdıç, O., Hayta, M., 2010. Yenilebilir bitki ve tohum filizlerinin fonksiyonel özellikleri, Gıda Dergisi, Baskıda.
  • Pasko, P., Barton, H., Zagrodski, P., Gorinstein, S., Folta, M., Zachwieja, Z., 2009. Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chemistry, 115: 994-998.
  • NACMCF (National Advisory Committee on Microbiological Microbiological recommendations on sprouted seeds. International Journal of Food Microbiology, 52: 123-153. 1999. and evaluations
  • De Roever, C., 1998. Microbiological safety evaluations and recommendations on fresh produce. Food Control, 9 (6): 321-347.
  • Thompson, S., Powell, D.A., 2000. Risks associated with the consumption of fresh sprouts, Food Safety Network, Accessed October 2007.
  • Wood, M., Safer sprouts, Agricultural Research Magazine, October 2007, 2000. Accessed
  • Waje, C.K., Jun, S.Y., Lee, Y.K., Kim, B.N., Han, D.H., Jo, C., Kwon, J.H., 2009. Microbial quality assessment and pathogen inactivation by electron beam and gamma irradiation of commercial seed sprouts, Food Control, 20: 200-204.
  • Rosas, C.J., Escartin, E.F., 2000. Survival and growth of Vibrio cholerae O1, Salmonella typhi and Escherichia coli O157:H7 in alfalfa sprouts. Journal of Food Science, 65: 162–165.
  • Sharma, R.R., Demirci, A., 2003. Treatment of Escherichia coli O157:H7 inoculated alfalfa seeds and sprouts with electrolyzed oxidizing water. International Journal of Food Microbiology, 86: 231- 237.
  • Montville, R., Schaffner, D., 2005. Monte Carlo simulation of pathogen behavior during the sprout production process, Applied and Environmental Microbiology, 71(2): 746-753.
  • Fett, W.F., Fu, T., Tortorello, M.L., 2006. Microbiology of fresh produce, ASM Press, Washington.
  • Abadias, M., Usall, J., Oliviera, M., Alegre, I., Viñas, I., 2008. Microbial quality of fresh, minimally- processed fruit and vegetables, and sprouts from retail establishments. International Journal of Food Microbiology, 123: 121 – 129.
  • Martinez-Villaluenga, C., Frías, J., Gulewicz, P., Gulewicz, K., Vidal-Valverde, C., 2008. Food safety evaluation of broccoli and radish sprouts. Food and Chemical Toxicology, 46: 1635-1644.
  • Alonzo, A.G., Mirasol, C.B., Estrada, A.M.P., Lopez, G.A.A., Nery, J.G.B., Villaflor, E.J.B., 2007. Microbiology of retail mung bean sprouts vended in public markets of national capital region, Philippines. Food Control, 18: 107-1313.
  • Tournas, V.H., 2005. Moulds and yeasts in fresh and minimally processed vegetables and sprouts. International Journal of Food Microbiology, 99: 71- 77.
  • Robertson, L.J., Johannessen, G.S., Gjerde, B.K., Loncarevic, S., 2002. Microbiological analysis of seed sprouts in Norway. International Journal of Food Microbiology, 75: 119 – 126.
  • Piernas, V., Guiraud, J.P. 1997. Microbial hazards related to rice sprouting, International Journal of Food Science and Technology, 32: 33-39.
  • Portnoy, B.L., Goepfert, J.M., Harmon, S.M., 1976. An outbreak of Bacillus cereus food poisoning resulting from contaminated vegetable sprouts. American Journal of Epidemiology, 103: 589-594.
  • Taormina, P.J., Beuchat, L.R., Slutsker, L. 1999. Infections associated with eating seed sprouts: an international concern. Emerging Infectious Disease, 5: 626-634.
  • Waje, C.K., Kwon, J.K., 2007. Improving the food safety of seed sprouts through irradiation treatment. Food Science and Biotechnology, 16: 171-176.
  • FDA (Food and Drug Administration), Amalgamated Produce, Inc. Recalls Sprouts in the North Eastern United States Because of Possible Health Risk, http://www.fda.gov/Safety/Recalls/ArchiveRecalls/2 009/ucm135947.htm, April 2009.
  • Mohle-Boetani, J.C., Farrar, J.A., Werner, S.B., Minassian, D., Bryant, R., Abbott, S., Slutsker, L., Vugia, D.J., 2001. Escherichia coli O157 and Salmonella infections associated with sprouts in California, 1996–1998. Annals of International Medicine, 135, 239-247.
  • Caetano- Anolles, G., Favelukes, G., Bauer, W.D., 1990. Optimization of surface sterilization for legume seed. Crop Science, 30: 708-712.
  • Hara-Kudo, Y., Konuma, H, Iwaki, M, Kasuga, F, Sugita-Konishi, Y, Ito, Y, Kumagai, S., 1997. Potential hazard of radish sprouts as a vehicle of Escherichia coli O157:H7. Journal of Food Protection, 60: 1125-1127.
  • Rajkowski, K.T., Thayer, D.W., 2000. Reduction of Salmonella spp. and strains of Escherichia coli O157:H7 by gamma irradiation of inoculated sprouts. Journal of Food Protection, 63: 871-875.
  • Bari, M.L., Al-Haq M.I., Kawasaki, T., Nakauma, M., Todoriki, S., Kawamoto, S., Isshikii, K., 2004. Irradiation to kill Escherichia coli O157:H7 and Salmonella on ready-to-eat radish and mungbean sprouts. Journal of Food Protection, 67: 2263-2268.
  • Jaquette, C.B., Beuchat, L.R., Mahon, B.E., 1996. Efficacy of chlorine and heat treatment in killing Salmonella Stanley inoculated onto alfalfa seeds and growth and survival of the pathogen during sprouting and storage. Application of Environmental Microbiology, 62: 2212-2215.
  • Weiss, A., Hammes, W.P., 2005. Efficacy of heat treatment in the reduction of Salmonellae and Escherichia coli O157:H7 on alfalfa, mung bean and radish seeds used for sprout production, European Food Research and Technology, 221: 187-191.
  • Penàs, E., Gómez, R., Frías, J., Vidal-Valverde, C. 2010. Efficacy of combinations of high pressure, temperature and antimicrobial products on germination of mung bean seeds and antimicrobial quality of sprouts. Food Control, 21: 82-88.
  • Lang, M.M., Ingham, B.H., Ingham, S.C., 2000. Efficacy of novel organic acid and hypochlorite treatments for eliminating Escherichia coli O157:H7 from alfalfa seeds prior to sprouting. International Journal of Food Microbiology, 58: 73-82.
  • Singh, N., Singh, R.K., Bhunia, A.K., 2003. Sequential disinfection of Escherichia coli O157:H7 inoculated alfalfa seeds before and during sprouting using aqueous chlorine dioxide, ozonated water and thyme essential oil. Swiss Society of Food Science and Technology, 36: 235-243.
  • Jin, H.H., Lee, S.Y., 2007. Combined effect of aqueous chlorine dioxide and modified atmosphere packaging on inhibiting Salmonella typhimurium and Listeria monocytogenes in mungbean sprouts. Journal of Food Science, 72: 441-445.
  • Piernas, V., Guiraud., J.P., 1998. Control of microbial growth on rice sprouts. International Journal of Food Science and Technology, 33: 297- 305.
  • Lee, M.J., Park, S.Y., Ha, S.D., 2007. Reduction of coliforms in rice treated with sanitizers and disinfectants. Food Control, 18: 1093-1097.
  • Kim, Y.J., Kim, M.H., Song, K.B. 2009. Efficacy of aqueous chlorine dioxide and fumaric acid for inactivating pre-existing microorganisms and Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes on broccoli sprouts, Food Control, 20: 1002-1005.
  • Buck, J.W., Walcott, R.R., Beuchat, L.R., 2003. Recent trends in microbiological safety of fruits and vegetables, http://www.plantmanagementnetwork.org, Accessed October 2007. Health Process
  • Code of Federal Regulations, 2000. 21 CFR Part 179 Irradiation in the production processing and handling of food. US Federal Register, 65, 64605- 64607.
  • TGK (Türk Gıda Kodeksi), 2005. Gıda ve Isınlama Yönetmeligi, http://www.kkgm.gov.tr/yonetmelik/gida_isinlama.ht ml.
  • Saroj, S. D., Hajare, S., Shashidhar, R., Dhokane, V., Sharma, A., Bandekar, J. R., 2007. Radiation processing typhimurium from inoculated seeds used for sprout making in India and effect of irradiation on germination of seeds. Journal of Food Protection, 70 (8): 1961-1965. of Salmonella
  • Chibani-Chennoufi, S., Bruttin, A., Dillmann, M.L., Bru¨ssow, H., 2004. Phage-host interaction: an ecological perspective. Journal of Bacteriology, 186: 3677– 3686.
  • Greer, G. G., 2005. Bacteriophage control of foodborne bacteria. Journal of Food Protection, 68 (5): 1102-1111.
  • Strauch, E., Hammerl, J.A., Hertwig, S., 2007. Bacteriophages: new tools for safer food. Journal of Consumer Protection and Food Safety, 2: 138–143.
  • Rees, C.E.D., Dodd, C.E.R., 2006. Phage for rapid detection and control of bacterial pathogens in food. Advances in Applied Microbiology, 59: 159–186.
  • Carlton, R.M., Noordman, W.H., Biswas, B., de Meester, Bacteriophage P100 for control of Listeria monocytogenes in foods: Genome sequence, bioinformatic analyses, oral toxicity study, and application. Pharmacology, 43 (3): 301-312. M.J., 2005. Regulatory Toxicology and
  • Kocharunchitt, C, Ross, T, McNeil, D.L., 2009. Use of bacteriophages as biocontrol agents to control Salmonella International Journal of Food Microbiology,128: 453- 459. with seed sprouts.
  • O'Flynn, G., Coffey, A., Fitzgerald, G.F., Ross, R.P., 2006. The newly isolated lytic bacteriophages st104a and st104b are highly virulent against Salmonella Microbiology, 101: 251–259. Journal of Applied
  • Guenther, S., Huwyler, D., Richard, S., Loessner, M.J., 2009. Virulent bacteriophage for efficient biocontrol of Listeria monocytogenes in ready-to-eat foods. Applied and Environmental Microbiology, 75 (1): 93-100.
  • Ye, J., Kostrzynska, M., Dunfield, K., Warriner, K., 2010. Control of Salmonella on sprouting mung bean and alfalfa seeds by using a biocontrol preparation based on antagonistic bacteria and lytic bacteriofhages. Journal of Food Protection, 73 (1): 9-17.