Metabolik Mühendisliğinde Laktik Asit Bakterileri

Gıdaların fermantasyonunda yaygın olarak kullanılan laktik asit bakterileri LAB , basit ve kontrol edilebilir bir metabolizmaya sahiptir. Bu derlemede LAB'nin bazı karakteristik özellikleri ve bu bakterilerin fermente gıdalardaki tat ve dokuya olan katkıları metabolik yolları özetlenerek açıklanmış ve metabolik mühendisliği ile bu yolların iyileştirilmesine yönelik çalışmalar irdelenmiştir

Lactic Acid Bacteria in Metabolic Engineering

Lactic acid bacteria, which are widely used in food fermentation, have a simple and controllable metabolism. In this review some characteristics of LABs and their contribution to flavor and texture of fermented foods were briefly explained by presenting metabolic pathways of LABs, and studies on the improvements of these pathways by metabolic engineering were discussed

___

  • Kleerebezem, M., Hugenholtz, J., 2003. Metabolic pathway engineering in lactic acid bacteria. Current Opinion in Biotechnology 14: 232-237.
  • Coşkun, F., 2006. Gıdalarda bulunan doğal koruyucular. Gıda Teknolojileri Elektronik Dergisi 2: 27-33.
  • Kleerebezem, M., Boels, I. C., Groot, M. N., Mierau, I., Sybesma, W., Hugenholtz, J., 2002. Metabolic engineering of Lactococcus lactis: the impact of genomics and metabolic modelling. Journal of Biotechnology 98: 199-213.
  • Hylckama, Vlieg van J. E. T., Hugenholtz, J., 2007. Mining natural diversity of lactic acid bacteria for flavour and health benefits. Internatıonal Dairy Journal 17: 1290-1297.
  • Hugenholtz, J., 2008. The lactic acid bacterium as a cell factory for food ingredient production. International Dairy Journal 18: 466-475.
  • Bolotin, A., Wincker, P., Mauger, S., Jaillon, O., Malarme, K., Weissenbach, J., Ehrlich, S. D., Sorokin, A.., 2001. Genome Research 11: 731-753.
  • Gürsoy, O., Kınık, O., 2005. Laktobasiller ve probiyotik peynir üretiminde kullanım potansiyelleri. Mühendislik Bilimleri Dergisi 12: 105-116.
  • Hugenholtz, J., Kleerebezem, M., 1999. Metabolic engineering of lactic acid bacteria: overview of the approaches and result of pathway rerouting involved in food fermentetions. Current Opinion in Biotechnology 10: 492-497.
  • Caplice, E., Fitzgerald, G. F., 1999. Food fermentations: Role of microorganisms in food production and preservation. International Journal of Food microbiology 50: 131-149.
  • Lücke, F. K., 1996. Lactic acid bacteria involved in food fermentations and their present and future uses in food industry. NATO ASI Series, Series H: Cell Biology, New York 98: 81-99.
  • Egan, A. F., 1983. Lactic acid bacteria of meat and meat products. Antonie van Leeuwenhoek 49: 327- 336.
  • Hols, P., Kleerebezem, M., Schanck, A.. N., Ferain, T., Hugenholtz, J., Delcour, J., Vos de W. M., 1999. Conversion of Lactococcus lactis from homolactic to homoalanine fermentation through engineering. Nature Biotechnology 17: 588-592.
  • Monnet, C., Aymes, F., Corrıeu, G., 2000. Diacetyl and Lactococcus lactis subsp. lactis biovar diacetylactis mutants that are deficient in alfa- acetolaktat decarboxylase dehydrogenase activity. Applied and Environmental Microbıology 66: 5518-5520.
  • overproduction by and have a low lactate
  • Sybesma, W., Starrenburg, M., Kleerebezem, M., Mierau, I., Vos de W. M., Hugenholtz, J. 2003. Increased production of folate by metabolic engineering of Lactococcus lactis. Applied and Environmental Microbıology 69: 3069-3076.
  • Akinterinwa, O., Khankal, R., Carmen Cirino, P., 2008. Metabolic engineering for bioproduction of sugar alcohols. Current Opinion in Biotechnology 19: 461-467.
  • Kranenburg, van R., Kleerebezem, M., Hylckama, Vlieg van J., Ursing, B. M., Boekhorst, J., Simit, B. A., Ayad, E. H. E., Simit, G., Siezen, R. J. 2001. Flavour formation from amino acids by lactic acid bacteria predictions from genome sequence analysis. International Dairy Journal 12: 111-121.
  • Bartowsky, E. J., Henschke, P. A., 2004. The ‘buttery’ attribute of wine—diacetyl—desirability, spoilage and beyond. International of Food Microbiology 96: 235-252.
  • Platteeuw, C., Hugenholtz, J., Starrenburg, M., Alen- Boerrigter van I. Vos de W. M., 1995. Metabolic Engineering of Lactococcus lactis influence of the overproduction of alfa- acetolactate synthase dehydrogenase as a function of culture conditions. Applied and Environmental Microbiology 61: 3967- 3971. deficient in lactate
  • Christensen, M. D., Pederson, C. S., 1958. Factors affecting diacetyl production by lactic acid bacteria. Applied and Environmental Microbiology 6: 316- 318.
  • Lopez de Felipe, F., Kleerebezem, M., Vos de W. M., Hugenholtz, J., 1998. Cofactor engineering a novel approach to metabolic engineerin in Lactococcus lactis by controlled expression of NADH oxidase. Journal of Bacteriology 180: 3804- 3808. [21] Welman, A. D., Maddox, S., 2003. Exopolysaccharides from lactic acid bacteria: perspectives Biotechnology 21: 269-274. Trends in
  • Kleerebezem, M., Kranenburg van, R., Tuinier, R., Boels, I. C., Zoon, P., Looijesteijn, E., Hugenholtz, J., Vos de W. M., 1999. Exopolysaccharides produced by Lactococcus lactis: from genetic engineering to improved rhelogical properties. Antonie van Leeuwenhoek 76: 357-365.
  • Sybesma, W., Burgess, C., Starrenburg, M., Sinderen van, D., Hugenholtz, J., 2003. Multivitamin production in Lactococcus lactis using metabolic engineering. Metabolic Engineering 6: 109-115.
  • Burgess, C., O2 Connell- Motherway, M., Sybesma ,W., Hugenholtz J., Sinderen van, D., 2004. Riboflavin production in Lactococcus lactis: potential for in situ production of vitamin-enriched foods. Applied and Environmental Microbıology 70: 5769 - 5777.
  • LeBlanc, J. G., Burgess, C., Sesma, F., Giori de, G. S., Sinderen van, D., 2005. Ingestion of milk fermented by genetically modified Lactococcus lactis improves the riboflavin status of deficient rats. American Dairy Science Association 88: 3435-3442.
  • Fischer, M., Bacher, A., 2008. Biosynthesis of vitamin B 2 : structure and mechanism of riboflavin synthase. Archives of Biochemistry and Biophysics 474: 252-265.
  • Akinterinwa, O., Cirino, P. C., 2008. Heterologous expression of D-xylulokinase from Pichia stipitis enables high levels of xylitol production by engineered Escherichia coli growing on xylose. Metabolic Engineering 11: 48-55.