Elektrik Potansiyeli ve Sıcaklığın Ohmik Isıtma ve Sıcak Suya Daldırma Esnasında Makarnaların Rehidrasyon Davranışları Üzerine Etkisi
Söz konusu çalışma kapsamında, farklı elektrik potansiyelleri altında (10, 20, 30 ve 40 V/cm) ohmik ısıtma ve farklı sıcaklıklarda (75, 85 ve 95°C) suya daldırma işlemi esnasında makarna örneklerinin rehidrasyon özellikleri incelenmiştir. Makarnaların rehidrasyon davranışlarını ifade etmek için Fick’in ikinci difüzyon kanunu kullanılarak, normal daldırma denemeleri için iki ve ohmik ısıtma denemeleri için üç farklı efektif difüzyon katsayısı hesaplanmıştır. Uygulanan farklı voltaj ve sıcaklıkların difüzyon katsayıları üzerine etkisi ise Arrhenius tipi bir eşitlikte değerlendirilmiştir. Ayrıca, gıdaların rehidrasyon özelliklerinin tanımlanmasında yaygın olarak tercih edilen iki model, Peleg ve Weibull, rehidrasyon denemelerinin kinetik analizi amacıyla kullanılmıştır. Elde edilen veriler neticesinde, hem daldırma suyu sıcaklığının hem de ohmik ısıtma esnasında uygulanan voltajın artırılması, makarna örneklerinin su emilimini hızlandırıcı etki göstermiştir. Hem Peleg hem de Weibull modelleri, normal daldırma denemeleri için üst düzey bir performans ortaya koymuştur. Ancak bunlardan sadece Weibull, ohmik ısıtma esnasında gözlenen nem değişimini kabul edilebilir seviyede ifade edebilmiştir. Normal daldırma denemelerinden farklı olarak, ohmik ısıtma işleminin ilk safhalarında nem emiliminde bir gecikme dikkati çekmiştir. Ancak genel olarak ohmik ısıtmanın makarnaların nem absorpsiyonu üzerine hızlandırıcı bir etkiye sahip olduğu ifade edilebilir.
Effects of Electrical Potential and Temperature on Rehydration Behaviour of Pasta Samples during Ohmic Heating and Soaking
In the present study, rehydration of pasta samples was examined during soaking at different temperatures (75, 85 and 95°C) and during ohmic heating at different electrical potential levels (10, 20, 30 and 40 V/cm) as an alternative method of pasta cooking. Two effective diffusion coefficients were defined using Fick’s second law of diffusion for regular soaking experiments and three diffusion coefficients were calculated to describe the rehydration behaviour during ohmic heating. The effect of applied voltage and temperature on the diffusion coefficients were evaluated using an Arrhenius type equation. Moreover, the two common models that are used to describe rehydration behaviour of food materials, namely Peleg and Weibull models, were used for kinetic analysis of rehydration experiments. It was observed that an increment both in temperature of cooking water and applied voltage for ohmic heating enhanced the water absorption rate of pasta samples then the rehydration was completed faster. The Peleg and Weibull models showed promising performance for regular soaking experiments where the first one could not describe moisture change of pasta during ohmic heating at a desired level. Different from soaking testes, a delayed moisture uptake phase was observed at the very beginning of ohmic heating experiments however it can be concluded that ohmic heating led an increment in moisture uptake rate in general.
___
- Abu-Ghannam, N., & McKenna, B. (1997). The application of Peleg's equation to model water absorption during the soaking of red kidney beans (Phaseolus vulgaris L.). Journal of food engineering, 32(4), 391-401.
- Alamprese, C., Casiraghi, E., & Rossi, M. (2011). Effects of housing system and age of laying hens on egg performance in fresh pasta production: pasta cooking behaviour. Journal of the Science of Food and Agriculture, 91(5), 910-914.
- Cafieri, S., Mastromatteo, M., Chillo, S., & Del Nobile, M. (2010). Modeling the mechanical properties of pasta cooked at different times. Journal of food engineering, 100(2), 336-342.
- Cocci, E., Sacchetti, G., Vallicelli, M., Angioloni, A., & Dalla Rosa, M. (2008). Spaghetti cooking by microwave oven: Cooking kinetics and product quality. Journal of food engineering, 85(4), 537-546.
- Crank, J. (1975). The mathematics of diffusion. Oxford, London: Clarendon Press.
- Cubadda, R. E., Carcea, M., Marconi, E., & Trivisonno, M. C. (2007). Influence of gluten proteins and drying temperature on the cooking quality of durum wheat pasta. Cereal Chemistry, 84(1), 48-55.
- Cunningham, S. E., McMinn, W. A. M., Magee, T. R. A., & Richardson, P. S. (2007). Modelling water absorption of pasta during soaking. Journal of food engineering, 82(4), 600-607.
- Demiray, E., & Tülek, Y. (2016). Güneşte Kurutulmuş Bamyaların Rehidrasyon Kinetiği. Academic Food Journal/Akademik GIDA, 14(4).
- Dıaz, G. R., Martınez-Monzo, J., Fito, P., & Chiralt, A. (2003). Modelling of dehydration-rehydration of orange slices in combined microwave/air drying. Innovative Food Science & Emerging Technologies, 4(2), 203-209.
- Doster, R. C., & Kahn, K. F. (1986). Process for producing shelf stable pasta containing product. In): Google Patents.
- Eliot, S. C., Goullieux, A., & Pain, J. P. (1999). Processing of cauliflower by ohmic heating: Influence of precooking on firmness. Journal of the Science of Food and Agriculture, 79(11), 1406-1412.
- García-Pascual, P., Sanjuán, N., Bon, J., Carreres, J. E., & Mulet, A. (2005). Rehydration process of Boletus edulis mushroom: characteristics and modelling. Journal of the Science of Food and Agriculture, 85(8), 1397-1404.
- García-Pascual, P., Sanjuán, N., Melis, R., & Mulet, A. (2006). Morchella esculenta (morel) rehydration process modelling. Journal of food engineering, 72(4), 346-353.
- Guida, V., Ferrari, G., Pataro, G., Chambery, A., Di Maro, A., & Parente, A. (2013). The effects of ohmic and conventional blanching on the nutritional, bioactive compounds and quality parameters of artichoke heads. LWT-Food Science and Technology, 53(2), 569-579.
- Hasegawa, A., & Adachi, S. (2014). Effects of relaxation of gluten network on rehydration kinetics of pasta AU - Ogawa, Takenobu. Bioscience, Biotechnology, and Biochemistry, 78(11), 1930-1934.
- İçier, F. (2005). Gıda İşlemede Alternatif Isıtma Yöntemi-Ohmik Isıtma. Gıda Dergisi, 30(2).
- İçier, F., Yıldız, H., Eroğlu, S., Sabancı, S., & Eroğlu, E. (2013). Ayva Dilimlerinin Ozmotik Kurutulmasında Elektriksel ve Ultrasonik Ön İşlemlerin Etkileri. Academic Food Journal/Akademik GIDA, 11(2).
- Jittanit, W., Khuenpet, K., Kaewsri, P., Dumrongpongpaiboon, N., Hayamin, P., & Jantarangsri, K. (2017). Ohmic heating for cooking rice: Electrical conductivity measurements, textural quality determination and energy analysis. Innovative Food Science & Emerging Technologies, 42, 16-24.
- Kanjanapongkul, K. (2017). Rice cooking using ohmic heating: Determination of electrical conductivity, water diffusion and cooking energy. Journal of Food Engineering, 192, 1-10.
- Kim, E. H.-J., Petrie, J. R., Motoi, L., Morgenstern, M. P., Sutton, K. H., Mishra, S., & Simmons, L. D. (2008). Effect of Structural and Physicochemical Characteristics of The Protein Matrix in Pasta on in Vitro Starch Digestibility. Food Biophysics, 3(2), 229-234.
- Knirsch, M. C., Dos Santos, C. A., de Oliveira Soares, A. A. M., & Penna, T. C. V. (2010). Ohmic heating–a review. Trends in food science & technology, 21(9), 436-441.
- Loypimai, P., Moonggarm, A., & Chottanom, P. (2009). Effects of ohmic heating on lipase activity, bioactive compounds and antioxidant activity of rice bran. Aust J Basic Appl Sci, 3(4), 3642-3652.
- Machado, M. F., Oliveira, F. A., & Cunha, L. M. (1999). Effect of milk fat and total solids concentration on the kinetics of moisture uptake by ready‐to‐eat breakfast cereal. International journal of food science & technology, 34(1), 47-57.
- Manthey, F. A., & Schorno, A. L. (2002). Physical and cooking quality of spaghetti made from whole wheat durum. Cereal Chemistry, 79(4), 504-510.
- Maroulis, Z. B., & Marinos-Kouris, D. (1996). Moisture Diffusivity Data Compilation in Foodstuffs AU - Zogzas, N.P. Drying Technology, 14(10), 2225-2253.
- Maskan, M. (2002). Effect of processing on hydration kinetics of three wheat products of the same variety. Journal of food engineering, 52(4), 337-341.
- Mercali, G. D., Schwartz, S., Marczak, L. D. F., Tessaro, I. C., & Sastry, S. (2014). Ascorbic acid degradation and color changes in acerola pulp during ohmic heating: Effect of electric field frequency. Journal of Food Engineering, 123, 1-7.
- Peleg, M. (1988). An empirical model for the description of moisture sorption curves. Journal of Food science, 53(4), 1216-1217.
- Resio, A. C., Aguerre, R. J., & Suarez, C. (2006). Hydration kinetics of amaranth grain. Journal of food engineering, 72(3), 247-253.
- Sam Saguy, I., Marabi, A., & Wallach, R. (2005). New approach to model rehydration of dry food particulates utilizing principles of liquid transport in porous media. Trends in food science & technology, 16(11), 495-506.
- Sanjuán, N., Simal, S., Bon, J., & Mulet, A. (1999). Modelling of broccoli stems rehydration process. Journal of food engineering, 42(1), 27-31.
- Singh, R. P., & Erdogdu, F. (2009). Virtual Experiments in Food Processing. Davis, California: RAR Press.
- Varghese, K. S., Pandey, M., Radhakrishna, K., & Bawa, A. (2014). Technology, applications and modelling of ohmic heating: a review. Journal of food science and technology, 51(10), 2304-2317.