Bitkisel Bir Kompozitin Yüzey Topografyası Basılabilirliğini Nasıl Etkiler?

Bu çalışmada, kabak lifi takviyeli bitkisel kompozit malzemelerin yüzey topografyasının basılabilirliğineetkisi incelenmiştir. Bu amaçla, takviye olarak kabak lifi ve matris olarak epoksi kullanılarak biyokompozitplakalar üretilmiştir. Daha sonra bu plakaların yüzeylerine çizgi ve nokta gibi baskılar serigrafibaskı yöntemi ile gerçekleştirilmiştir. Baskıdan önce ve sonra, üretilen biyo-kompozitlerin yüzeypürüzlülük değerleri, 3D temassız optik profilometre kullanılarak ölçülmüştür. Daha sonra bu ölçümleridoğrulamak ve baskı kalitesini kontrol etmek için 3D Optik Profilometre biyo-kompozit malzemelerinyüzey pürüzlülüğünü taramak için kullanılmıştır. Elde edilen sonuçlara göre, kompozit yüzeytopografyasındaki gelişme, yüzey pürüzsüzlüğünü arttırmaktadır. Bu sonuç ile yüzey pürüzsüzlüğünün,elde edilen görüntü netliği için basılabilirliğin ana parametresi olduğu açıkça anlaşılmaktadır.

How Does the Surface Topography of a Green Composite Affect its Printability?

In this study, printability properties of plant fiber-reinforced green composite materials were examined to understand the effect of surface topography. Since green composites are environmentally friendly materials, the main purpose of this study is to investigate and find new application areas. For this purpose, bio-composite plates using luffa fiber as reinforcement and epoxy as the matrix was produced. Then, the surfaces of these plates were carried out by the screen printing method. Before and after printing, the surface roughness values of the produced bio-composites were measured using 3D non-contact optical profilometer. Then, 3D Optical Profilometer is used to scan the surface roughness of bio-composite materials. The EPI 20X v35 lens was used to profile the surface of bio-composite materials. According to the obtained results, it has been found that the improvement of the composite surface topography increased surface smoothness, which is the most important characteristic of printability for obtained images sharpness.

___

  • 1. Cheung, H.Y., Ho, M.P., Lau, K.T., Cardona, F., Hui, D. (2009). Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Composites Part B-Engineering 40 (7) 655-663.
  • 2. Genc, G., El Hafidi, A., Gning, P.B. (2012). Comparison of the mechanical properties of flax and glass fiber composite materials. Journal of Vibroengineering 14 (2) 572-581.
  • 3. Genc, G., Koruk, H. (2016). Investigation of the Vibro-Acoustic Behaviors of Luffa Bio Composites and Assessment of Their Use for Practical Applications. in 23rd International Congress on Sound and Vibration: From Ancient to Modern Acoustics, Athens, Greece. 1-8.
  • 4. Genc, G., Koruk, H. (2017). Identification of the Dynamic Characteristics of Luffa Fiber Reinforced Bio-Composite Plates. Bioresources 12 (3) 5358-5368.
  • 5. Alemdar, A., Sain, M. (2008). Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties. Composites Science and Technology 68 (2) 557-565.
  • 6. Boynard, C.A., D'Almeida, J.R.M. (2000). Morphological characterization and mechanical behavior of sponge gourd (Luffa cylindrica) - Polyester composite materials. Polymer-Plastics Technology and Engineering 39 (3) 489-499.
  • 7. Wambua, P., Ivens, J., Verpoest, I. (2003). Natural fibres: can they replace glass in fibre reinforced plastics? Composites Science and Technology 63 (9) 1259-1264.
  • 8. Genc, G., Akkus, N. (2018). Application oriented recycling and machinability of waste bio-composite materials. Turkish Journal of Materials 3 (2) 58-60.
  • 9. Al-Oqla, F.M., Sapuan, S.M. (2014). Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. Journal of Cleaner Production 66 347-354.
  • 10. Behazin, E., Ogunsona, E., Rodriguez-Uribe, A., Mohanty, A.K., Misra, M., Anyia, A.O. (2016). Mechanical, Chemical, and Physical Properties of Wood and Perennial Grass Biochars for Possible Composite Application. Bioresources 11 (1) 1334-1348.
  • 11. Genc, G. (2015). Dynamic properties of luffa cylindrica fiber reinforced bio-composite beam. Journal of Vibroengineering 17 (4) 1615-1622.
  • 12. Sonmez, S. (2017). Development of Printability of Bio-Composite Materials Using Luffa cylindrica Fiber. BioResources 12 (1) 760-773.
  • 13. Whitehouse, (2002). Handbook of Surface and Nanometrology. 1st Edition ed., New York: Taylor & Francis, New York.
  • 14. Deltombe, R., Kubiak, K.J., Bigerelle, M. (2014). How to select the most relevant 3D roughness parameters of a surface. Scanning 36 (1) 150-160.
  • 15. Ulker, O. (2018). Surface Roughness of Composite Panels as a Quality Control Tool. Materials (Basel, Switzerland) 11 (3) 407.
  • 16. Richard, L. (2001). The Measurement of Surface Texture Using Stylus Instruments (Measurement good practice guide). National Physical Laboratory.
  • 17. Sonmez, S. (2017). Comparison of into the effects of ultraviolet flexo ink on printability of the paperboards coated with carboxymethyl cellulose and polyvinyl alcohol. Journal of Polytechnic 20 (4) 985-991.
  • 18. Pandey. A. (2018). Development of Long Trace Profiler for the Low varying Surface Measurement. In Department of PhysicsIndian Institute of Technology, New Delhi.