Türk Mısır (Zea mays L.) Hibridlerinin Üşüme Stresi Toleranslarında Fenotipik Varyasyonların Belirlenmesi

Mısır (Zea mays L.) tropikal orjinli bir bitkidir ve düşük sıcaklıklar (15 ᵒC'nin altında) büyüme inhibisyonuna yol açarak verim kayıplarına neden olur. Bu nedenle, üşüme stresine dayanıklı mısır çeşitlerinin geliştirilmesi, serin iklimlerde mısır yetiştirebilmek için mısır ıslahçılarının temel amaçları arasındadır. Hibridler, çeşitli streslere daha toleranslı olduklarından ebeveynlerine göre üstündür. Ancak, stres taramasının yapılması zordur. Bu bağlamda, çalışma, Türk mısır hibritlerinin üşüme stres toleranslarını değerlendirmeyi ve en toleranslı hibrit seçiminde uygun belirteçleri belirlemeyi amaçlamaktadır. Bu doğrultuda dokuz farklı genotipe sahip mısır hibridi, çimlenmelerinin ardından üçüncü yaprakları tamamen olgunlaşıncaya kadar düşük gece sıcaklığına maruz bırakılmıştır. Üşümeye maruz bırakılan hibridler, kontrol şartlarında yetiştirilen fideler ile karşılaştırılarak stres toleransları morfolojik, hücresel ve fizyolojik seviyelerde değerlendirilmiştir. Veriler kinematik analiz ve istatistiksel araçlar ile analiz edilmiştir. Bulgulara göre, tüm stres belirteçleri hibridler arasında önemli derecede farklılık göstermiştir. Yaprak uzama oranı (LER), olgun hücre uzunluğu (MCL) ve hücre üretimi (CP) gibi belirteçler, fenotip ve hücresel fonksiyonlar arasında bağlantı kurmaya olanak sağladığından stres tolerans mekanizmasını anlamamızda faydalı olduğu görülmüştür. Bununla birlikte, taze ve kuru fide ağırlığının (SFW ve SDW) fidelerin büyüme ile fizyolojik stres tepkisi arasındaki ilişkiyi ortaya çıkarmak için yararlı göstergeler olduğu saptanmıştır. Sonuç olarak, bu çalışma, genetik varyasyon sergilediği gözlenen üşüme stresi toleransı geliştirmeyi amaçlayan ıslah çalışmalarında mısırın erken aşamada taranabilmesine olanak sağlayan bir yaklaşım sunmaktadır.

Evaluation of Phenotypic Variation among Turkish Maize (Zea mays L.) Hybrids for Tolerance to Chilling Stress

Maize (Zea mays L.) is a tropical crop and chilling temperatures (below 15 ºC) cause growth retardationand yield losses. The development of chilling-tolerant maize varieties is one of the goals of plantbreeders growing maize in cool climates. Hybrids are more vigorous than their parents, including beingmore tolerant to diverse stresses. However, stress screening is a problematic. This study aims toevaluate chilling stress tolerance of Turkish maize hybrids and to determine suitable indicators forselecting the most tolerant hybrid. Nine hybrids were subjected to low night-time temperaturesfollowing germination until the third leaf was fully enlarged. Hybrids were evaluated at themorphological, cellular and physiological levels by comparison with control seedlings. The data weresubjected to kinematic analysis and statistical tools. The findings showed that all indicators differedsignificantly among the hybrids. Indicators such as leaf elongation rate, mature cell length and cellproduction increase our understanding of stress tolerance by establishing connections betweenphenotype and cellular functions. Shoot fresh and dry weight emerged useful indicators for revealingassociation between growth and the physiological stress response of seedlings. In conclusion, this studyidentified beneficial indicators for breeding studies at early seedling screening of maize hybridsexhibiting genetic variation in terms of chilling stress tolerance.

___

  • Avramova, V., Nagel, A. K., AbdElgawad, H., Bustos, D., DuPlessis, M., Fiorani, F., and Beemster, G.T.S., 2016. Screening for drought tolerance of maize hybrids by multi-scale analysis of root and shoot traits at the seedling stage. Journal of Experimental Botany, 67(8), 2453-2466. doi:10.1093/jxb/erw055
  • Ben-Haj-Sallah, H., and Tardieu, F., 1995. Temperature affects expansion rate of maize leaves without change in the spatial distribution of cell length. Plant Physiology, 109, 1–9. doi.org/10.1104/pp.109.3.861
  • Bhosale, S. U., Rymen, B, Beemster, G. T. S., Melchinger, A. E., and Reif, J. C., 2007. Chilling tolerance of Central European maize lines and their factorial crosses. Annals of Botany, 100(6), 1315–1321. doi:10.1093/aob/mcm215
  • Cramer, G. R., and Bowman, D. C., 1991. Short-term leaf elongation kinetics of maize in response to salinity are independent of the root. Plant Physiology, 95(3), 965- 967. doi:10.1104/pp.95.3.965
  • Durand, J. L., Gastal, F., Etchebest, S., Bonnet, A. C., and Ghesquiere, M., 1997. Interspecific variability of plant water status and leaf morphogenesis in temperate forage grasses under summer water deficit. European Journal of Agronomy, 7, 99–107. doi:10.1016/S1161- 0301(97)00021-X
  • Durand, J. L., Schaufele, R., and Francois, G., 1999. Grass leaf elongation rate as a function of developmental stage and temperature: morphological analysis and modelling. Annals of Botany, 83, 577–588. doi:10.1006/anbo.1999.0864
  • Duvick, D.N., 2001. Biotechnology in the 1930s: the development of hybrid maize. Nature Reviews Genetics, 2(1), 69–74. doi:10.1038/35047587
  • Fiorani, F., Beemster, G. T. S., Bultynck, L., and Lambers, H., 2000. Can meristematic activity determine variation in leaf size and leaf elongation rate between four Poa species? A kinematic study. Plant Physiology, 124(2), 845–856. doi:10.1104/pp.124.2.845
  • Gama, P. B. S., Tanaka, K., Eneji, A. E., Eltayeb, A. E., and El Siddig, K., 2009. Salt-Induced Stress Effects on Biomass. Photosynthetic Rate. and Reactive Oxygen Species-Scavenging Enzyme Accumulation in Common Bean. Journal of Plant Nutrition, 32(5), 837- 854. doi:10.1080/01904160902787925
  • Gastal, F., Belanger, G., and Lemaire, G., 1992. A model of leaf extension rate of tall fescue in response to nitrogen and temperature. Annals of Botany, 70, 437- 442. doi:10.1093/oxfordjournals.aob.a088500
  • Greer, D. H., Weedon, M. M., and Weston, C., 2011. Reductions in biomass accumulation. photosynthesis in situ and net carbon balance are the costs of protecting Vitis vinifera ‘Semillon’ grapevines from heat stress with shade covering. AoB Plants, 2011, plr023. doi:10.1093/aobpla/plr023
  • Jones, T. L., Tucker, D. E., and Ort, D. R., 1998. Chilling delays circadian pattern of sucrose phosphate synthase and nitrate reductase activity in tomato. Plant Physiology, 118, 149-158. doi:10.1104/pp.118.1.149
  • Kim, S. I., and Tai, T. H., 2011. Evaluation of seedling cold tolerance in rice cultivars: a comparison of visual ratings and quantitative indicators of physiological changes. Euphytica, 178, 437-447. doi:10.1007/s10681-010-0343-4
  • Meng, C., and Sui, N. (2019). Overexpression of maize MYB-IF35 increases chilling tolerance in Arabidopsis. Plant Physiology and Biochemistry, 135, 167-173. doi:10.1016/j.plaphy.2018.11.038
  • Nelissen, H., Sun, X.H., Rymen, B., Jikumaru, Y., Kojima, M., Takebayashi, Y., Abbeloos, R., Demuynck, K., Storme, V., Vuylsteke, M., De Block, J., Herman, D., Coppens, F., Maere, S., Kamiya, Y., Sakakibara, H., Beemster, G. T. S., and Inze, D., 2018. The reduction in maize leaf growth under mild drought affects the transition between cell division and cell expansion and cannot be restored by elevated gibberellic acid levels. Plant Biotechnology Journal, 16(2), 615-627. doi:10.1111/pbi.12801
  • Neves-Piestun, B. G., and Bernstein, N., 2001. Salinityinduced inhibition of leaf elongation in maize is not mediated by changes in cell wall acidification capacity. Plant Physiology, 125(3), 1419-1428.
  • Pahlavanian, A. L., and Silk, W. K., 1988. Effect of temperature on spatial and temporal aspects of growth in the primary maize root. Plant Physiology, 87, 529–532.
  • Petrozza, A., Santaniello, A., Summerer, S., Di Tommaso, G., Di Tommaso, D., Paparelli, E., Piaggesi, A., Perata, P., and Cellini, F., 2014. Physiological responses to Megafol treatments in tomato plants under drought stress: A phenomic and molecular approach. Scientia Horticulturae, 174. doi:10.1016/j.scienta.2014.05.023
  • Riva-Roveda, L., Escale, B., Giauffret, C., and Perilleux, C., 2016. Maize plants can enter a standby mode to cope with chilling stress. BMC Plant Biology, 16(1), 212. doi:10.1186/s12870-016-0909-y
  • Roy, S. J., Tucker, E. J., and Tester, M., 2011. Genetic analysis of abiotic stress tolerance in crops Current Opinion in Plant Biology, 14, 232–239. doi:10.1016/j.pbi.2011.03.002
  • Rymen, B., Fiorani, F., Kartal, F., Vandepoele, K., Inze, D., and Beemster, G. T. S., 2007. Cold nights impair leaf growth and cell cycle progression in maize through transcriptional changes of cell cycle genes. Plant Physiology, 143(3), 1429-1438. doi:10.1104/pp.106.093948
  • Schneider, C. A., Rasband, W. S., and Eliceiri, K. W., 2012. NIH Image to ImageJ: 25 years of image analysis. Nature methods, 9(7), 671-675
  • Takahashi, R., Joshee, N., and Kitagawa, Y., 1994. Induction of chilling resistance by water stress. and cDNA sequence analysis and expression of water stress-regulated genes in rice. Plant Molecular Biology, 26, 339-352. doi:10.1007/BF00039544
  • Tokuhisa, J., and Browse, J., 1999. Genetic Engineering of Plant Chilling Tolerance. In: J.K. Setlow, (Ed.) Genetic Engineering: Principles and Methods. vol 21. Boston, MA: Springer. doi:10.10071978-1-4615-4707-5
  • Tonkinson, C. L., Lyndon, R. F., Arnold, G. M., and Lenton, J.R., 1997. The effects of temperature and the Rht3 dwarfing gene on growth. cell expansion. and gibberellin content and responsiveness in the wheat leaf. Journal of Experimental Botany 48, 963–970. doi:10.1093/jxb/48.4.963
Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 2015
  • Yayıncı: AFYON KOCATEPE ÜNİVERSİTESİ