Süperkapasitör Uygulamaları için Nikel/Nikel Köpük Elektrodun İyonik Sıvı İçerisinden Elektrokimyasal Olarak Sentez

Nikel temelli elektrot, enerji depolama malzemeleri için kolin klorür ve üre bazlı iyonik sıvı içerisinden nikel köpük akım toplayıcı üzerine elektrokimyasal olarak depolandı. Kaplamaların KOH elektrolitinde nikel köpük üzerindeki elektrokimyasal davranışı, dönüşümlü voltametri tekniği ile incelendi. İyonik bir sıvıdan elektrodepolanan elektrotlar, pozitif potansiyelde (0 ile 0.6 V arasında) redoks reaksiyonuna sahip oldukları için katot elektrotu olarak kullanılabilir. SEM ile kaplanmamış ve kaplanmış nikel köpüğün yüzey morfolojisi incelendi. Nikel köpüğün kendisi 2B dökme nikelden daha büyük bir yüzey alanına sahiptir. Nikelin iyonik sıvıdan elektrodepolanmasında yüksek yüzey alanına sahip mikropartiküller elde edilmiştir. Bu yüzden nikel kaplı nikel köpük elektrot ile bazik elektrolit arasındaki iyon ve elektron transfer hızı artırıldı. Nikel temelli nikel köpük elektrotunun KOH elektroliti içerisindeki reaksiyon mekanizması, difüzyon kontrollü olarak gerçekleşti. Bağlayıcı içermeyen nikel köpük üzerindeki nikel bazlı elektrot, 5 mV s-1 tarama hızında 1055 F g-1'lik spesifik kapasitansa sahiptir. İyonik sıvı içerisinden nikel köpük yüzey üzerine elde edilen nikel temelli kaplamalar, enerji depolama cihazlarında katot elektrot olarak kullanılabilir.

Electrochemical Synthesis of Nickel/Nickel Foam Electrode From Ionic Liquid for Supercapacitor Applications

Nickel based electrode was deposited electrochemically on a nickel foam current collector from choline chloride and urea based ionic liquid for energy storage materials. Electrochemical behaviour of the coatings on the nickel foam in KOH electrolyte was characterised by means of cyclic voltammetry. The electrodes electrodeposited from an ionic liquid could be used as a cathode electrode as they have redox reaction at positive potential (between 0 and 0.6 V). SEM provides the surface morpology of uncoated and coated nickel foam. Nickel foam itself has a greater surface area than a 2D bulk nickel. Nickel microparticles with high surface area on a foam were obtained by electrodeposition of nickel from ionic liquid. The rate of ion and electron transfer between nickel coated nickel foam electrode and alkaline electrolyte has been increased. The reaction mechanism of nickel coated foam electrode was conttrolled by diffusion step in KOH. Nickel-based electrode on nickel foam which did not require a binder had a specific capacitance of 1055 F g-1 at a scan rate of 5 mV s-1. Electrodeposited nickel based coatings on nickel foam from an ionic liquid can be used as a potential cathode electrode in energy storage devices.

___

  • Aghazadeh, M., Amir R., Mohammad Reza G., and Mohammad G.M., 2016. Nickel Oxide NanoRods/Plates as a High Performance Electrode Materials for Supercapacitors; Electrosynthesis and Evolution of Charge Storage Ability. Int. J. Electrochem. Sci 11, 11002–15. Algharaibeh, Z, Xiaorong L, and Peter G.P, 2009. An Asymmetric Anthraquinone-Modified Carbon/Ruthenium Oxide Supercapacitor. Journal of Power Sources 187(2), 640–43. Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J. M., Van Schalkwijk, W., 2011. Nanostructured Materials for Advanced Energy Conversion and Storage Devices. In Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, World Scientific, 148–59. Boukhalfa, S., Evanoff, K., Yushin, G., 2012. Atomic Layer Deposition of Vanadium Oxide on Carbon Nanotubes for High-Power Supercapacitor Electrodes. Energy & Environmental Science 5(5), 6872–79. Chu, S., Majumdar, A., 2012. Opportunities and Challenges for a Sustainable Energy Future. nature 488(7411), 294. Çınar Demir, K., 2018. Elektrokimyasal Büyütme Tekniğiyle Büyütülen Geçirgen NiO Ince Filmlerin Hazırlanması ve Karakterizasyonu. Pamukkale University Journal of Engineering Sciences 24(7), 1315-1324. Dubal, D. P., Gund, G. S., Lokhande, C. D., Holze, R., Chandrakant D. L., and Rudolf Holze, 2013. CuO Cauliflowers for Supercapacitor Application: Novel Potentiodynamic Deposition. Materials Research Bulletin 48(2), 923–28. Greiner, M. T., Chai, L., Helander, M. G., Tang, W. M., Lu, Z. H., 2012. Transition Metal Oxide Work Functions: The Influence of Cation Oxidation State and Oxygen Vacancies. Advanced Functional Materials 22(21), 4557–68. Hu, C. C., Huang, Y. H., Chang, K. H., 2002. Annealing Effects on the Physicochemical Characteristics of Hydrous Ruthenium and Ruthenium–Iridium Oxides for Electrochemical Supercapacitors. Journal of Power Sources 108(1–2), 117–27. Kandalkar, S. G., Gunjakar, J. L., Lokhande, C. D., 2008. Preparation of Cobalt Oxide Thin Films and Its Use in Supercapacitor Application. Applied Surface Science 254(17), 5540–44. Kar, M., Tutusaus, O., MacFarlane, D. R., Mohtadi, R., 2019. Novel and Versatile Room Temperature Ionic Liquids for Energy Storage. Energy & Environmental Science. Lu, Q., Lattanzi, M. W., Chen, Y., Kou, X., Li, W., Fan, X., Xiao, J. Q., 2011. Supercapacitor Electrodes with High‐energy and Power Densities Prepared from Monolithic NiO/Ni Nanocomposites. Angewandte Chemie International Edition 50(30), 6847–50. Lu, W., Qu, L., Henry, K., Dai, L., 2009. High Performance Electrochemical Capacitors from Aligned Carbon Nanotube Electrodes and Ionic Liquid Electrolytes. Journal of Power Sources 189(2), 1270–77. Mendoza-Sánchez, B., Brousse, T., Ramirez-Castro, C., Nicolosi, V., Grant, P. S., 2013. An Investigation of Nanostructured Thin Film α-MoO3 Based Supercapacitor Electrodes in an Aqueous Electrolyte. Electrochimica Acta 91, 253–60. Plieth, W. 2008, Electrochemistry for Materials Science. Elsevier, 190-192. Pusawale, S. N., Deshmukh, P. R., Lokhande, C. D., 2011. Chemical Synthesis of Nanocrystalline SnO2 Thin Films for Supercapacitor Application. Applied Surface Science 257(22), 9498–9502. Ribeiro, P. F., Johnson, B. K., Crow, M. L., Arsoy, A., Liu, Y., 2001. Energy Storage Systems for Advanced Power Applications. Proceedings of the IEEE 89(12), 1744– 56. Sharma, R. K., Rastogi, A. C., Desu, S. B., 2008. Manganese Oxide Embedded Polypyrrole Nanocomposites for Electrochemical Supercapacitor. Electrochimica Acta 53(26), 7690–95. Simon, P., Gogotsi, Y., 2010. Materials for Electrochemical Capacitors. In Nanoscience And Technology: A Collection of Reviews from Nature Journals, World Scientific, 320–29. Smith, E. L., Abbott, A. P., Ryder, K. S., 2014. Deep Eutectic Solvents (DESs) and Their Applications. Chemical reviews 114(21), 11060–82. Wang, D. W., Li, F., Zhao, J., Ren, W., Chen, Z. G., Tan, J., Cheng, H. M., 2009. Fabrication of Graphene/Polyaniline Composite Paper via in Situ Anodic Electropolymerization for HighPerformance Flexible Electrode. ACS nano 3(7), 1745–52. Wang, G., Zhang, L., Zhang, J., 2012. A Review of Electrode Materials for Electrochemical Supercapacitors. Chemical Society Reviews 41(2), 797–828. Wang, H., Yang, Y., Liang, Y., Robinson, J. T., Li, Y., Jackson, A., Dai, H., 2011. Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium–Sulfur Battery Cathode Material with High Capacity and Cycling Stability. Nano letters 11(7), 2644–47. Winter, M., Brodd, R. J., 2004. What Are Batteries, Fuel Cells, and Supercapacitors? Wu, H., Li, Y., Ren, J., Rao, D., Zheng, Q., Zhou, L., Lin, D., 2019. CNT-Assembled Dodecahedra Core@ Nickel Hydroxide Nanosheet Shell Enabled Sulfur Cathode for High-Performance Lithium-Sulfur Batteries. Nano Energy 55, 82–92. Xiong, X., Ding, D., Chen, D., Waller, G., Bu, Y., Wang, Z., Liu, M., 2015. Three-Dimensional Ultrathin Ni(OH)2 Nanosheets Grown on Nickel Foam for HighPerformance Supercapacitors. Nano Energy 11, 154–61. Yadav, A. A., Chavan, U. J., 2018. Electrochemical Supercapacitive Performance of Spray-Deposited NiO Electrodes. Journal of Electronic Materials 47(7), 3770–78. Yu, Z., Tetard, L., Zhai, L., Thomas, J., 2015. Supercapacitor Electrode Materials: Nanostructures from 0 to 3 Dimensions. Energy & Environmental Science 8(3), 702–30. Zhang, Y., Feng, H., Wu, X., Wang, L., Zhang, A., Xia, T., Zhang, L., 2009. Progress of Electrochemical Capacitor Electrode Materials : A Review. International Journal of Hydrogen Energy 34(11), 4889–99. Zhi, M., Xiang, C., Li, J., Li, M., Wu, N., 2013. Nanostructured Carbon–Metal Oxide Composite Electrodes for Supercapacitors: A Review. Nanoscale 5(1), 72–88.