Silikon Nanopartikül Maruziyetine Bağlı Olarak Oluşan İn Vitro Sitotoksik ve Moleküler Etkiler

Silikon nanopartikülleri çevresel, biyolojik, kimyasal ve fiziksel amaçlarla çeşitli alanlarda yaygın olarak kullanılmaktadır. Bu nanopartiküllerin klinik ve endüstriyel alanlarda kullanılabilmesi için güvenilirlikleri özellikle genotoksisite ve sitotoksisite açısından doğrulanmalıdır. Bu yüzden mevcut çalışmada, yaygın olarak kullanılan silikon nanopartiküllerinin ( silikon karbid, silikon dioksit, silikon nitrit) insan alveolar epitel (HPAEpiC) ve farinks (HPPC) hücrelerindeki sitotoksisitesi ve gen ekspresyon profillerindeki değişimlerin araştırılması amaçlanmıştır. HPAEpiC ve HPPC hücreleri 72 saat boyunca silikon nanopartikülleriyle (0-100 µg/mL) muamele edildi. Nanopartiküllerin sitotoksisite değerlendirmeleri için 3-(4,5 dimetylthiazol -2-yl) - 2,5 diphenltetrazolium bromide (MTT) ve laktat dehidrogenaz salınım (LDH) yöntemleri kullanılırken; genotoksisite analizi için cDNA array - RT-PCR yöntemi kullanıldı. MTT ve LDH yöntemi sonuçlarına göre, uygulanan bütün test nanopartikülleri hem HPAEpiC hem de HPPC hücre hatlarında doza bağlı olarak sitotoksisiteyi indüklemiştir. HPAEpiC ve HPPC hücrelerinin ilgili genler açısından (apoptozis, DNA fasarı ve tamiri, oksidatif stres) gen ekspresyon profilleri incelendiğinde silikon naopartiküllerinin ekspresyonu değiştirdiği gözlenmiştir. Bu çalışmadan elde edilen nanotoksisiteye bağlı olarak oluşan gen ekspresyon profilleri, silikon nanopartiküllerin klinik ve çevresel uygulamalarda kullanılabilmesi için önemli bir kaynak oluşturmaktadır

In Vitro Cytotoxicity and Molecular Effects Related to Silicon Nanoparticles Exposures,

Silicon nanoparticles are widely used for various applications including environmental, biological, chemical and physical. And, to translate these nanomaterials to the clinic and industrial domains, their safety needs to be verified, particularly in terms of genotoxicity and cytotoxicity. Therefore, in this study, we aimed to investigate of cytotoxicity and changes in gene expression profiles influenced by commonly silicon (as silicon carbide, silicon dioxide, silicon nitride) nanoparticles in human alveolar epithelial (HPAEpiC) and pharynx (HPPC) cell lines in vitro since inhalation is an important pathway for exposure to these nanoparticles. HPAEpiC and HPPC cells were treated with silicon (0-100 µg/mL), nanoparticles for 72 h, and then cytotoxicity was detected by, [3-(4,5-dimethyl-thiazol-2-yl) 2,5diphenyltetrazolium bromide] (MTT) and lactate dehydrogenase (LDH) release assays, while genotoxicity was also analyzed by cDNA array - RT-PCR assay. According to the results of MTT and LDH assays, all tested nanoparticles induced cytotoxicity on both HPAEpiC and HPPC cells in dose-dependent manner. Determining and analyzing the gene expression profiles of HPAEpiC and HPPC cells, silicon nanoparticles showed changes in genes related to apoptosis, DNA damage or repair and oxidative stress. This study of gene expression profiles affected by nanotoxicity provides critical information for the clinical and environmental applications of silicon nanoparticles

___

  • Amoabediny, Gh., Naderi, A., Malakootikhah, J., Koohi, MK., Mortazavi, S.A., Naderi, M. and Rashedi, H., 2009. Guidelines for safe handling, use and disposal of nanoparticles. Journal of Physics: Conference Series, 170, 012037.
  • Asadpour, E., Sadeghnia, H.R., Ghorbani, A., Sedaghat, M. and Boroushaki, M.T., 2016. Oxidative stressmediated cytotoxicity of zirconia nanoparticles on PC12 and N2a cells. Journal of Nanoparticle Research, 18, 14, (in press) DOI 10.1007/s11051-015-3316-7.
  • Baca, A.J ., Meitl, M.A ., Ko, H.C ., Mack, S., Kim, H.S., Dong, J.Y., Ferreira, P.M. and Rogers, J.A., 2007. Printable single-crystal silicon micro/nanoscale ribbons, platelets and bars generated from bulk wafers. Advanced Functional Materials, 17, 3051- 3062.
  • Brown, D.R., Herms, J. and Kretzschmar, H.A., 1994. Mouse cortical cells lacking cellular PrP survive in culture with a neurotoxic PrP fragment. Neuroreport, 5, 2057-2060.
  • Cavarroc, M., Mikikian, M., Perrier, G. and Boufendi, L., 2006. Single-crystal silicon nanoparticles: An instability to check their synthesis. Applied Physics Letters, 89, 013107
  • Chantrenne, P. and Lysenko, V., 2005. Thermal conductivity of interconnected silicon nanoparticles: Application to porous silicon nanostructures. Physical Review B, 72, 035318.
  • Chen, Y., Chen, J., Dong, J. and Jin, Y., 2004. Comparing study of the effect of nanosized silicon dioxide and microsized silicon dioxide on fibrogenesis in rats. Toxicology Industrial Health, 20, 21-27.
  • Chen, Z., Meng, H., Xing, G., Chen, C., Zhao, Y., Jia, G., Wang, T., Yuan, H., Ye, C., Zhao, F., Chai, Z., Zhu, C., Fang, X., Ma, B. and Wan, L., 2006. Acute toxicological effects of copper nanoparticles in vivo. Toxicology Letters, 163, 109-120.
  • Choi, J., Zhang, Q., Reipa, V., Wang, N.S., Stratmeyer, M.E., Hitchins, V.M. and Goering, P.L., 2009. Comparison of cytotoxic and inflammatory responses of photoluminescent silicon nanoparticles with silicon micron-sized particles in RAW 264.7 macrophages. Journal of Applied Toxicology, 29, 52-60.
  • Fischer, H.C. and Chan, W.C., 2007. Nanotoxicity: the growing need for in vivo study. Current Opinion in Biotechnology, 18, 565-571.
  • Gerloff, K., Albrecht, C., Boots, A.W., Förster, I. and Schins, R.P.F., 2009. Cytotoxicity and oxidative DNA damage by nanoparticles in human intestinal Caco-2 cells. Nanotoxicology, 3, 355-364.
  • Gök, H., 2007. Nanotechnology: future directions from physiatrists’ perspective. The Turkish Journal of Physical Medicine and Rehabilitation, 53, 13-17.
  • Gong, C., Tao, G., Yang, L., Liu, J., He, H. and Zhuang, Z., 2012. The role of reactive oxygen species in silicon dioxide nanoparticle-induced cytotoxicity and DNA damage in HaCaT cells. Molecular Biology Reports, 39, 4915-4925.
  • Gurr, J.R., Wang, A.S., Chen, C.H. and Jan, K.Y., 2005. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology, 213, 66- 73.
  • Heintz, A.S., Fink, M.J. and Mitchell, B.S., 2010. Silicon nanoparticles with chemically tailored S surfaces. Applied Organometallic Chemistry 24, 236-240.
  • Huang, C.C., Aronstam, R.S., Chen, D.R. and Huang, Y.W., 2010. Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles. Toxicology In Vitro, 24, 45-55.
  • Hwang, D.W., Lee, D.S. and Kim, S., 2012. Gene expression profiles for genotoxic effects of silica-free and silica-coated cobalt ferrite nanoparticles. Journal of Nuclear Medicine, 53, 106-112.
  • Kipen, H.M. and Laskin, D.L., 2005. Smaller is not always better: nanotechnology yields nanotoxicology. American Journal of Physiology - Lung Cellular and Molecular Physiology, 289, 696-697.
  • Kocaefe, Ç., 2007. Nanotıp: Yaşam bilimlerinde nanoteknoloji uygulamaları. Hacettepe University Acta Medica, 38, 33-38.
  • Leite-Silva, V.R., Liu, D.C., Sanchez, W.Y., Studier, H., Mohammed, Y.H., Holmes, A., Becker, W., Grice, J.E., Benson, H.A. and Roberts, M.S., 2016. Effect of flexing and massage on in vivo human skin penetration and toxicity of zinc oxide nanoparticles. Nanomedicine (Londra), 11, 1193-1205.
  • Lin, W., Huang, Y.W., Zhou, X.D. and Ma, Y., 2006. In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicology and Applied Pharmacology, 217, 252-259.
  • Melo, E.S., Goloubkova, T., Barbeiro, D.F., Gorjão, R., Vasconcelos, D., Szabo, C., Curi, R., de Lima Salgado, T.M., Velasco, I.T. and Soriano, F.G., 2010. Endotoxin tolerance: selective alterations in gene expression and protection against lymphocyte death. Immunobiology, 215, 435-442.
  • Nel, A., Xia, T., Mädler, L. and Li, N., 2006. Toxic potential of materials at the nanolevel. Science, 311, 622-627.
  • Oberdorster, G., Oberdorster, E. and Oberdorster, J., 2005. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives, 113, 823-839.
  • Okuda-Shimazaki, J., Takaku, S., Kanehira, K., Sonezaki, S. and Taniguchi, A., 2010. Effects of titanium dioxide nanoparticle aggregate size on gene expression. International Journal of Molecular Sciences, 11, 2383- 2392.
  • Ong, C., Lee, Q.Y., Cai, Y., Liu, X., Ding, J., Yung, L.Y., Bay, B.H. and Baeg, G.H., 2016. Silver nanoparticles disrupt germline stem cell maintenance in the Drosophila testis. Scientific Reports, 6, 20632.
  • Park, E.J., Yi, J., Chung, K.H., Ryu, D.Y., Choi, J. and Park, K., 2008. Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicology Letters, 180, 222-229. Portakal, O., 2008. Bioassays and nanoparticles. Turkish Journal of Biochemistry 33: 35-38.
  • Schmidt V, Wittemann JV, Senz S, Gosele U (2009) Silicon nanowires: a review on aspects of their growth and their electrical properties. Advanced Materials, 29, 2681- 2702.
  • Şekeroğlu-Atlı, Z., 2013. From nanotechnology to nanogenotoxicology: genotoxic effect of cobaltchromium nanoparticles. Turkish Bulletin of Hygiene and Experimental Biology, 70, 33-42.
  • Sonmez, E., Turkez, H., Aydın, E., Özgeriş, F.B., Öztetik, E. and Kerli, S., 2015. Hepatic effects of yttrium oxide nanoflowers: in vitro risk evaluation. Toxicological & Environmental Chemistry, 97, 599-608.
  • Stampoulis, D., Sinha, S.K. and White, J.C., 2009. Assay-dependent phytotoxicity of nanoparticles to plants. Environmental Science & Technology, 43, 9473- 9479.
  • Syed, S., Zubair, A. and Frieri, M., 2013. Immune response to nanomaterials: implications for medicine and literature review. Current Allergy and Asthma Reports, 13, 50-57.
  • The Royal Society and The Royal Academy of Engineering. Nanoscience and nanotechnologies: opportunities and uncertainties, 2004, London, UK.
  • Tomalia, D.A., Reyna, L.A. and Svenson, S., 2007. Dendrimers as multipurpose nanodevices for oncology drug delivery and diagnostic imaging. Biochemical Society Transactions, 35, 61-67.
  • Turkez, H., Sonmez, E., Aydin, E., Hacımuftuoglu, A. and Öztetik, E., 2016. Choosing the right antioxidant supplement for protecting liver from toxicity of engineered nanoparticles: a comprehensive invitroscreening. Applied Mechanics and Materials, 835, 57-62.
  • Ünlü, S. and Sağlar, E., 2012. Investigation of MDM2 gene expression changes in peripheral blood lymphocytes after in-vitro gamma radiation exposure. Fırat University Medical Journal of Health Sciences, 26, 87-90.
  • Yang, H., Liu, C., Yang, D., Zhang, H. and Xi, Z., 2009. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. Journal of Applied Toxicology, 29, 69-78.
  • Yokogawa, K., Watanabe, M., Takeshita, H., Nomura, M., Mano, Y. and Miyamoto, K., 2004. Serum aminotransferase activity as a predictor of clearance of drugs metabolized by CYP isoforms in rats with acute hepatic failure induced by carbon tetrachloride. International Journal of Pharmaceutics, 269, 479-489.
  • Yolanda, P., 2016. Challenges in the determination of engineered nanomaterials in foods. Trends in Analytical Chemistry, 84, 149-159.
  • Zhang, W.X. and Elliott, D.W., 2006. Applications of iron nanoparticles for ground water remediation. Remediation, 16, 7-21.
  • Ziady, A.G., Gedeon, C.R., Muhammad, O., Stillwell, V., Oette, S.M., Fink, T.L., Quan, W., Kowalczyk, T.H., Hyatt, S.L., Payne, J., Peischl, A., Seng, J.E., Moen, R.C., Cooper, M.J. and Davis, P.B., 2003. Minimal toxicity of stabilized compacted DNA nanoparticles in the murine lung. Molecular Therapy, 8, 948- 956.
  • Zschech, D., Kim, D.H., Milenin, A.P., Scholz, R., Hillebrand, R., Hawker, C.J., Russell, T.P., Steinhart, M. and Gösele, U., 2007. Ordered arrays of 〈100〉- oriented silicon nanorods by cmos-compatible block copolymer lithography. Nano Letters, 7, 1516-