The Effect of the Shear Modulus on Planes which is Perpendicular to the Crack’s Edge-planes and Parallel to the Crack’s Front on the ERR in an Orthotropic Rectangular Prism with a Band Crack

Bu çalışmada, ortotropik malzemeden yapılmış dikdörtgen prizma ele alınmıştır. Bu prizmanın bir bant çatlak içerdigi ve çatlağın düzlemlerinin, prizmanin alt ve üst düzlemlerine paralel olduğu kabul edilmiştir. Ayrıca prizmanın alt ve üst yüzeylerine düzgün yayılımlı normal kuvvetlerin etki ettiği kabul edilmiştir. Bu çalışmanın amacı; bir dikdörtgen prizmada, çatlak düzlemine dik ve çatlak yüzüne paralel olan kayma modülünün ERR'ye etkisini, farklı geometrik parametreler için incelemektir. Uygun sınır değer problemin matematiksel formülasyonu 3 boyutlu lineer elastistise teorisi çerçevesinde yapılmıştır. Bu problemi çözmek için 3 Boyutlu Sonlu Elemanlar Yöntemi kullanılmıştır. Sayısal sonuçlar sunulmuştur

Bant Çatlak Içeren Ortotropik Malzemeden Yapılmış bir Dikdörtgen Prizmada, Çatlak Düzlemine Dik ve Çatlak Yüzüne Paralel Kayma Modülünün ERR’ye Etkisi

In this study, a rectangular prism made of an orthotropic material is considered. It is assumed that this prism contains a band crack whose edge-planes are parallel to the upper and lower face planes. It is also assumed that uniformly distributed normal forces are imposed the top and bottom surface of the prism. The aim of this paper is to analyze the effect of the shear modulus on planes which is perpendicular to the crack’s edge-planes and parallel to the crack’s front on the Energy Release Rate (ERR) for different geometric parameters in a rectangular prism. The mathematical formulation of the corresponding boundary-value problem is carried out within the framework of the 3-dimensional linear theory of elasticity. In order to solve this problem, the 3D finite element method was employed. The numerical results are presented.

___

  • Akbarov, S.D. and Turan, A. , 2009. Mathematical modelling and the study of the influence of initial stresses on the SIF and ERR at the crack tips in a plate-strip of orthotropic material. Applied Mathematical Modelling, 33(9), 3682-3692.
  • Cherepanov, G. P., 1967. The propagation of cracks in a continuous medium. Journal of Applied Mathematics and Mechanics, 31(3), 503-512.
  • Ding S.H. and Li. X., 2014. The collinear crack problem for an orthotropic functionally graded coating-substrate structure. Archive of Applied Mechanics, 84(3), 291-307.
  • Fan C., Jar P.Y.B. and Cheng J.J.R., 2007. Prediction of energy release rates for crack growth using FEM-based energy derivative technique. Engineering Fracture Mechanics, (74)8, 1243- 1254.
  • Gosz M., Dolbow J. and Moran B., 1998.Domain integral formulation for stress intensity factor computation along curved three-dimensional interface cracks. International Journal of Solids and Structures, 35(15)1763–1783.
  • Knowles, J.K. and Sternberg E., 1972. On a Class of Conservation Laws in Linearized and Finite Elastostatics. Archive for Rational Mechanics and Analysis (44)3, 187-211.
  • Lekhnitskii S. G., 1981. Elasticity Theory of Anisotropic Bodies, (in Russian), Mir, Moscow.
  • Li S., Mear M.E. and Xiao L., 1998. Symmetric weak-form integral equation method for three- dimensional fracture analysis. Computer Methods in Applied Mechanics and Engineering, 151(3-4), 435–459.
  • Maiti S.K., 1992. Finite element computation of crack closure integrals and stress intensity factors. Engineering Fracture Mechanics, 41(3), 339–348.
  • Oneida E.K., van der Meulen M.C.H and Ingraffea A.R., 2015. Method for calculating G, GI, and GII to simulate crack growth in 2D, multiplematerial structures. Engineering Fracture Mechanics, (140), 106-126.
  • Rice, J. R., 1968. A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics, 35(2), 379-386.
  • Shivakumar K.N., Tan P.W., and Newman J.C., 1988. A virtual crack-closure technique for calculating stress intensity factors for cracked three dimensional bodies. International. Journal Fracture, 36(3), R43–R50.
  • Sih G., 1973. Handbook of Stress Intensity Factors, Lehigh University.
  • Sukumar N., Moes N., Moran B. and Belytschko T., 2000. Extended finite element method for threedimensional crack modeling. International Journal for Numerical Methods Engineering, 48(11), 1549-1570.
  • Tada, H., Paris, P. C. and Irwin, G. R., 1985. The Stress Analysis of Cracks Handbook. 2nd ed., Paris Productions Inc., St. Louis, Missouri
  • Yusufoglu E. and Turhan I.,2012 . A mixed boundary value problem in orthotropic strip containing a crack. Journal of the Franklin Institute, 349(9), 2750–2769.
  • Zienkiewicz O. C. and Taylor R L., 1989. The Finite Element Method- 4th Ed. Vol. 1, Basic Formulation and Linear Problems, London: McGraw-Hill Book Company.