Sezgisel Fuzzy Normlu Uzaylarda ?-Lacunary İstatiksel Yakınsaklık
Bu çalışmada, ilk olarak (μ,ν) sezgisel normuna göre ℐ-lacunary istatistiksel yakınsaklık ve kuvvetli ℐlacunary yakınsaklık kavramları tanımlandı. Daha sonra bu kavramlar arasındaki ilişkiler incelendi ve bu kavramlar üzerine önemli gözlemler yapıldı. Bununla birlikte, ilgili sezgisel fuzzy normlu uzayda (μ,ν) sezgisel normuna göre ℐ-lacunary istatistiksel yakınsaklık ile ℐ-istatistiksel yakınsaklık arasındaki ilişkiler incelendi.
?-Lacunary Statistical Convergence in Intuitionistic Fuzzy Normed Spaces
In this study, first, we investigate the notions of ℐ-lacunary statistical convergence and strongly ℐlacunary convergence with regards to the intuitionistic fuzzy norm (IFN for short) (μ,ν). Then, weinvestigate relationships among this new concepts and make important observations about them.Futhermore, we examine the relations among ℐ-lacunary statistical convergence and ℐ-statisticalconvergence in terms of IFN (μ,ν) in the corresponding intuitionistic fuzzy normed space.
___
- Atanassov, K.T., 1986. Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20, 87-96.
- Atanassov, K., Pasi, G. and Yager, R., 2002. Intuitionistic fuzzy interpretations of multi-person multicriteria decision making. Proceedings of First International IEEE Symposium Intelligent Systems, 1, 115-119.
- Bakery, A.A., 2014. Operator ideal of Cesàro type sequence spaces involving lacunary sequence. Abstract and Applied Analysis, 2014, 6 pp. Article ID 419560.
- Das, P. and Ghosal, S., 2010. Some further results on ℐCauchy sequences and condition (AP). Computers & Mathematics with Applications, 59, 2597-2600.
- Das, P. and Debnath, P., 2011. On generalizations of certain summability methods using ideals. Applied Mathematics Letters, 24, 1509-1514.
- Debnath, P., 2012. Lacunary ideal convergence in intuitionistic fuzzy normed linear spaces. Computers & Mathematics with Applications, 63, 708-715.
- Debnath, P. and Sen, M., 2014. Some completeness results in terms of infinite series and quotient spaces in intuitionistic fuzzy n-normed linear spaces. Journal of Intelligent & Fuzzy Systems, 26, 975-782.
- Debnath, P., 2015. Results on lacunary difference ideal convergence in intuitionistic fuzzy normed linear spaces. Journal of Intelligent & Fuzzy Systems, 28, 1299-1306.
- Fast, H., 1951. Sur la convergence statistique. Colloquium Mathematicum, 2, 241-244.
- Fridy, JA., 1985. On statistical convergence. Analysis, 5, 301-313.
- Fridy, J.A. and Orhan, C., 1993a. Lacunary statistical convergence. Pacific Journal of Mathematics, 160(1), 43-51.
- Fridy, J.A. and Orhan, C., 1993b. Lacunary statistical summability. Journal of Mathematical Analysis and Applications, 173, 497-504.
- Hosseini, S.B., Regan, D.O. and Saadati, R., 2007. Some results of intuitionistic fuzzy spaces. Iranian Journal of Fuzzy Systems, 4(1), 53-64.
- Karakuş, S., Demirci, K. and Duman, O., 2008. Statistical convergence on intuitionistic fuzzy normed spaces. Chaos, Solitons & Fractals, 35, 763-769.
- Kişi, Ö. and Dündar, E., 2018. Rough ℐ2 -lacunary statistical convergence of double sequences. Journal of Inequalities and Applications, 2018:230, 1-16.
- Kostyrko, P., Šalát, T. and Wilczynki, W., 2000. ℐconvergence. Real Analysis Exchange, 26(2), 669-686.
- Li, J., 2000. Lacunary statistical convergence and inclusion properties between lacunary methods. International Journal of Mathematics and Mathematical Sciences, 23(3), 175-180.
- Mursaleen, M. and Mohiuddine, S.A., 2009. On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space. Journal of Computational and Applied Mathematics, 233(2), 142-149.
- Pancaroğlu, Akın, N., Dündar, E. and Ulusu, U., 2018. Asymptotically ℐ??-statistical equivalence of sequences of sets defined by a modulus functions. Sakarya University Journal of Science, 22(6), 1857- 1862.
- Park, J.H., 2004. Intuitionistic fuzzy metric spaces. Chaos, Solitons & Fractals, 22, 1039-1046.
- Saadati, R. and Park, J.H., 2006. On the intuitionistic fuzzy topological spaces. Chaos, Solitons & Fractals, 27, 331-344.
- Savaş, E. and Das, P., 2011. A generalized statistical convergence via ideals. Applied Mathematics Letters, 24, 826–30.
- Savaş, E. and Gürdal, M., 2015. A generalized statistical convergence in intuitionistic fuzzy normed spaces. Science Asia, 41, 289-294.
- Savaş, E., Yamancı, U. and Gürdal, M., 2019. ℐ-lacunary statistical convergence of weighted g via modulus functions in 2-normed spaces. Communications Faculty of Sciences University of Ankara Series A1- Mathematics and Statistics, 68(2), 2324-2332.
- Šalát, T., 1980. On statistically convergent sequences of real numbers. Mathematica Slovaca, 30, 139-150.
- Sen, M. and Debnath, P., 2011. Lacunary statistical convergence in intuitionistic fuzzy n normed spaces. Mathematical and Computer Modelling, 54(11-12), 2978-2985.
- Sen, M., Savaş, E. and Ghosal, SKr., 2011. On generalizations of certain summability methods using ideals. Applied Mathematics Letters, 24, 1509-1514.
- Tripathy, B.C., Hazarika, B. and Choudhary, B., 2012. Lacunary ℐ-convergent sequences. Kyungpook Mathematical Journal, 52(4), 473-482.
- Ulusu, U., Dündar, E. and Nuray, F., 2018. Lacunary ℐ2- invariant convergence and some properties. International Journal of Analysis and Applications, 16(3), 317-327.
- Ulusu, U. and Dündar, E., 2018. ℐ-lacunary statistical convergence of sequences of sets. Filomat, 28(8), 1567-1574.
- Yamancı, U. and Gürdal, M., 2014a. ℐ-statistical convergence in 2-normed space. Arab Journal of Mathematical Sciences, 20(1), 41-47.
- Yamancı, U. and Gürdal, M., 2014b. ℐ-statistically preCauchy double sequences. Global Journal of Mathematical Analysis, 2(4), 297-303.
- Zadeh, L.A., 1965. Fuzzy sets. Information and Control, 8, 338-353.