Polietilen Oksitin Ultrasonik Zincir Kırılması: Konsantrasyon ve Sıcaklık Etkisi

Polietilen oksitin sulu çözeltilerde ultrasonik zincir kırılması çalışılmıştır. Çözelti konsantrasyonu ve sıcaklığın polietilen oksit zincir kırılmasına etkileri incelenmiştir. Sonikasyon 20 kHz ultrases frekansında sabit güç ile 1x10-3, 2x10-3, 3x10-3, 4x10-3 g/mL polietilen oksit konsantrasyonlarında ve 10, 20, 30, 40 0C sıcaklıklarda gerçekleştirilmiştir. Polimer zincir kırılması çözeltinin spesifik viskozitesinin sonikasyon zamanına göre değişimi cinsinden karakterize edilmiştir. Teorik Madras ve Giz zincir kırılması modelleri viskozite ortalama molekül ağırlığı değişimini analiz etmek ve limit molekül ağırlığı - kırılma sabiti belirlemek için kullanılmıştır. Sonuçlar viskozite-molekül ağırlığının azaldığını ve zincir kırılmasının daha düşük sıcaklıklar ve çözelti konsantrasyonlarında daha hızlı ilerlediğini göstermektedir

Ultrasonic Chain Scission of Polyethylene Oxide: Effect of Concentration and Temperature

The ultrasonic chain scission of polyethylene oxide was studied in aqueous solutions. The effects of solution concentration and temperature on polyethylene oxide chains scission were investigated. Sonication is performed at 20 kHz ultrasound frequency with fixed power at 1x10-3 , 2x10-3 , 3x10-3 , 4x10- 3 g/mL polyethylene oxide concentration and temperatures of 10, 20, 30, 40 0 C. Poymer chain scission was charactrized in terms of the change in the specific viscosity of the solution as a function of sonication time. Theoretical Madras and Giz chain scission models were used to analyse the viscosity average molecular weight evaluation and determine the limit molecular weight – scission constant. Results show that viscosity - molecular weight decreased and the chain scission proceeded faster for lower temperatures and solution concentrations.

___

  • Akyüz, A., Çatalgil-Giz, H. and Giz A. 2008. Kinetics of ultrasonic polymer degradation: comparison of theoretical models with on-line data. Macromolecular Chemistry and Physics, 209, 801- 09.
  • Akyüz, A., Kamer, O. and Giz A. 2013. Online viscometric monitoring of ultrasonic sodium poly(styrene sulfonate) scission. Journal of Macromolecular Science, Part A, 50, 535-540.
  • Akyüz, A. ,Çatalgil-Giz, H., Giz, A. 2008. Investigation of termination during ultrasonic depolymerization. Macromolecular Symposia, 275, 112-116.
  • Duval, M., Gross, E., 2013. Degradation of polyethylene oxide in aqueous solutions by ultrasonic waves, Macromolecules, 46, 4972-4977.
  • Feng, L., Cao, Y., Xu, D., Wang, S., Zhang, J. 2017. Molecular weight distribution, rheological property and structural changes of sodium alginate induced by ultrasound. Ultrasonics Sonochemistry, 34, 609- 615.
  • Gogate, P. R., Prajabat, A. L. 2015. Depolymerization using sonochemical reactors: a critical review. Ultrasonics Sonochemistry, 27, 480- 494.
  • Kanwal, F., Pethrick, R. A., 2004. Ultrasonic degradation studies of poly(ethylene oxide), poly(ethylene adipate) and poly(dimethyllsiloxane), Polymer Degradation and Stability, 84, 1-6.
  • Kulicke, W. M., Clasen, C. and Lohman, C. 2005. Characterization of water solublecellulose derivatives in terms of the molar mass and particle size as well as their distribution. Macromolecular Symposia, 223, 151-74
  • Mohapatra, H., Kleiman, M., Esser-Khan, A. P. 2017. Mechanically controlled radical polymerization initiated by ultrasound. Nature Chemistry, 9, 135- 139.
  • Mehrdad, A. and Rostami, M. R. 2007. Effect of temperature and solution concentration on the ultrasonic degradation of the aqueous solutions of polyethylene oxide. Iranian Polymer Journal, 16, 795-801.
  • Mehrdad, A. 2008. Effect of HCl and solution concentration on the ultrasonic degradation of aqueous solutions of polyethylene oxide. Journal of Polymer Engineering, 28, 597-610.
  • Murali, V. S., Wang, R. Mikoryak, C. A., Pantano, P., Draper, R. 2015. Rapid detection of polyethylene glycol sonolysis upon functionalization of carbon nanomaterials, Experimental Biology and Medicine, 240, 1147-1151.
  • Pu, Y., Zou, Q., Hou, D., Zhang, Y., Chen, S. 2017. Molecular weight kinetics and chain scission models for dextran polymers during ultrasonic degradation. Carbohydrate Polymers, 156, 71-76.
  • Rashed, M. H., Lemanowicz, M., Gierczycki, A. T. 2012. Employement of polymer degradation models in population balance equations describing flocculation with sonicated polymers, International Journal of Mineral Processing, 104, 1-10.
  • Schaefer, M., Icli, B., Weder, C., Lattuada, M., Kilbinger, A. F. M. 2016. The role of mass and length in the sonochemistry of polymers. Macromolecules, 49, 1630-1636.
  • Smolinske, S. C. 1992 Handbook of Food, Drug and Cosmetic Excipients. CRC Press, 287.
  • Taghizadeh, M. T., Vatanparast, M. 2016. Ultrasonic-assisted synthesis of ZrO2 nanoparticles and their application to improve the chemical stability of nafion membrane in proton exchange membrane fuel cells. Journal of Colloid and Interface Science, 483, 1-10.
  • Vijayalakkshmi S. P., Madras, G. 2004. Effect of temperature on the ultrasonic degradation of polyacrylamide and polyethylene oxide, Polymer Degradation and Stability, 84, 341-344.
  • Vijayalakkshmi S. P., Madras, G. 2005. Effect of initial molecular weight and solvents on the ultrasonic degradation of polyethylene oxide, Polymer Degradation and Stability, 90, 116-122.
  • Zhou, C., Yu, X. Zhang, Y. He, R., Ma, H. 2012. Ultrasonic degradation, purification and analysis of structure and antioxidant activity of polysaccharide from porphyra yezonensis, Carbohydrate Polymers, 87, 2046-2051.
Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 2015
  • Yayıncı: AFYON KOCATEPE ÜNİVERSİTESİ