Dağıtım Sistemleri için Kendinden Ayarlanabilir FACTS Cihazı ve Denetleyicisi
Bu çalışmada, dağıtım sistemleri için FACTS tabanlı dinamik anahtarlamalı C-tipi filtre (DSCTF) kompanzatörü, farklı denetim stratejileri ve yük karakteristikleri ile sunulmaktadır. Enerji kullanım verimini artırmak ve güç kalitesi problemlerini bastırmak için dinamik denetim stratejilerini içeren DSCTF nin tasarımı ve dijital gerçekleştirilmesi çalışılmıştır. FACTS DSCTF cihazının etkinliğini doğrulamak için Matlab/Simulink yazılım ortamı kullanılmıştır. Önerilen FACTS-DSCTF in güç kalitesi ve enerji kullanım problemlerini azaltmanın yanı sıra gerilim bozukluklarını ve akım harmoniklerini de kompanzasyonunda etkili olduğunu göstermektedir.
A Self Adjustable FACTS Device and Controller for Distribution Systems
In this paper, a FACTS based dynamic switched C-type filter (DSCTF) compensator scheme for distribution systems is presented with different load characteristics and control strategies. In order to suppress power quality problems and increase overall energy utilization efficiency; design and digital realization of the DSCTF consisting of dynamic control strategies are studied. Matlab/Simulink Software Environment is employed to validate the effectiveness of FACTS DSCTF device. It has been shown that the proposed FACTS-DSCTF is effective to mitigate power quality and energy utilization problems as well as in compensating voltage disturbances and current harmonics
___
- Ang, K.H., Chong, G. and Li, Y., 2005. PID control system analysis, design, and technology. IEEE Transactions on Control Systems Technology, 13(4), 559-576.
- Bindra A., 2016. Projecting the evolution of power electronics: Highlights from FEPPCON VIII. IEEE Power Electronics Magazine, 3(1), 32-44.
- Busarello, T.D.C., Pomilio, J.A. and Simões, M.G., 2016. Passive filter aided by shunt compensators based on the conservative power theory. IEEE Transactions on Industry Applications, 52(4), 3340- 3347.
- Davidson, C.C. and de Preville, G., 2009. The future of high power electronics in transmission and distribution power systems. 13th European Conference on Power Electronics and Applications, 2009, EPE '09, 1-14.
- Hingorani, N.C., 1995. Power Electronics: Advances in the application of power electronics in generation, transmission, and distribution systems. IEEE Power Engineering Review, 15(10), 13-13.
- Johnson, M.A. and Moradi, M.H., 2005. PID control, new identification and design methods. Springer-Verlag.
- Latran, M.B., Teke, A. and Yoldas Y., 2015. Mitigation of power quality problems using distribution static synchronous compensator: a comprehensive review. IET Power Electronics, 8(7), 1312-1328.
- Lee, T.L., Wang, Y.C., Li, J.C. and Guerrero, J.M., 2015. Hybrid active filter with variable conductance for harmonic resonance suppression in industrial power systems. IEEE Transactions on Industrial Electronics, 62(2), 746-756.
- Li, Y., Liu, F., Saha, T.K., Krause, O. and Cao, Y., 2015. Hybrid inductive and active filtering method for damping harmonic resonance in distribution network with non-linear loads. IET Power Electronics, 8(9), 1616-1624.
- Mazumdar, J., Harley, R.G., Lambert, F.C. and Venayagamoorthy, G.K., 2007. Neural network based method for predicting nonlinear load harmonics. IEEE Transactions on Power Electronics, 22(3), 1036-1045.
- Ozkop, E., Sharaf, A.M. and Altas, I.H., 2011. An Intelligent Self Adjustable Facts Device for Distribution Systems. International Journal of Power Engineering & Green Technology (IJPEGT), 2(1), 11- 26, 2011.
- Peng, F.Z., Akagi, H. and Nabae, A., 1990. A new approach to harmonic compensation in power systems-a combined system of shunt passive and series active filters. IEEE Transactions on Industry Applications, 26(6), 983-990.
- U.S. Energy Information Administration (EIA), 2016. International Energy Outlook. DOE/EIA-0484(2016), IEA Press.
- Wang, P., Goel, L., Liu, X. and Choo, F.H., 2013. Harmonizing AC and DC: A Hybrid AC/DC Future Grid Solution. IEEE Power and Energy Magazine, 11(3), 76-83.
- Wang, Q.G., Ye, Z., Cai, W.J. and Hang, C.C., 2008. PID Control for multivariable processes. Springer-Verlag, Berlin Heidelberg