Pirazol Temelli Yeni Bir Kopolimerin [poli(1,3-difenil-1H-pirazol-5-il metakrilat-ko-stiren)] Termal Bozunma Kinetiği

Mevcut çalışmada, pirazol sübstitüe gruplu 1,3-difenil-1H-pirazol-5-il metakrilat (DPMA) ve stiren (St) birimlerini içeren yeni bir kopolimer [poli(DPMA-ko-St)] sentezlenmiş ve kopolimer sisteminin termal bozunma kinetiği termogravimetrik analiz (TGA) tekniği ile detaylıca araştırılmıştır. Isıtma hızındaki değişime bağlı olarak (5 °C/dak – 20 °C/dak) kopolimerin termal stabilitesinde 252,02 °C'den 274,89 °C'ye bir artış gözlemlenmiştir. Kopolimerin termal bozunma aktivasyon enerjileri, %9 - %21 dönüşüm aralığında, Kissinger ve Flynn-Wall-Ozawa yöntemleri ile sırasıyla 149,37 kJ/mol ve 140,99 kJ/mol olarak sonuçlanmıştır. Coats-Redfern, Tang, Madhusudanan ve Van Krevelen gibi farklı kinetik metotlar ışığında kopolimerin termal bozunma mekanizması incelenmiştir. Elde edilen sonuçlar kopolimerin termal bozunma mekanizmasının özellikle Coats-Redfern metoduna göre 20 °C/dak optimum ısıtma hızında tek boyutlu difüzyon tipi bir yavaşlama mekanizması yani D1 mekanizması üzerinden ilerlediğini göstermiştir.

Thermal Degradation Kinetics of a Novel Pyrazole Based Copolymer [poly(1,3-diphenyl-1H-pyrazol-5-yl methacrylate-co-styrene)]

In the present study, a new copolymer containing pyrazole substituted 1,3-diphenyl-1H-pyrazol-5-yl methacrylate (DPMA) and styrene (St) units, [poly(DPMA-co-St)], was synthesized. Thermal degradation kinetics of the copolymer system was investigated in detail with the thermogravimetric analysis (TGA) technique. An increase in the thermal stability of the copolymer from 252.02 °C to 274.89 °C was observed depending on the change in heating rate (5 °C/min – 20 °C/min). The thermal degradation activation energies of the copolymer were 149.37 kJ/mol and 140.99 kJ/mol, respectively, with the Kissinger and Flynn-Wall-Ozawa methods in the conversion range of 9% - 21%. The thermal degradation mechanism of the copolymer was investigated in the light of different kinetic methods such as Coats-Redfern, Tang, Madhusudanan, Van-Krevelen and Horowitz-Metzger. The results showed that the thermal decomposition mechanism of the copolymer proceeds through a one-dimensional diffusion-type deceleration mechanism, namely the D1 mechanism, at the optimum heating rate of 20 °C/min, especially according to the Coats-Redfern method.

___

  • Ameduri, B., Boutevin, B. and Malek, F., 1994. Synthesis and Characterization of Styrenic Polymers with Pendant Pyrazole Groups. II. Journal of Polymer Science: Part A Polymer Chemistry, 32, 729-740.
  • Asif, M., Imran, M. and Husain A., 2021. Approaches for chemical synthesis and diverse pharmacological significance of pyrazolone derivatives: A review. Journal of the Chilean Chemical Society, 66 (2), 5149-5163.
  • Coats, A.W. and Redfern, J. P. 1964. Kinetic parameters from thermogravimetric data, Nature, 201, 68-69.
  • Flynn, J.H. and Wall, L.A., 1966. A quick, direct method for the determination of activation energy from thermogravimetric data. Journal of Polymer Science, Part B, 4, 323-328.
  • Gardiner, J., Martinez-Botella, I., Tsanaktsidis, J. and Moad, G., 2016. Dithiocarbamate RAFT agents with broad applicability - the 3,5-dimethyl-1H-pyrazole-1-carbodithioates, Polymer Chemistry, 7(2), 481-492.
  • Hamielec, A.E., Macgregor, J.F. and Penlidis, A., 1989. Copolymerization, Editor(s): Allen, G. And Bevington, J.C., Comprehensive Polymer Science and Supplements, Pergamon, 17-31.
  • Karrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y.N., Al-aizari, F.A. and Ansar, M., 2018. Synthesis and pharmacological activities of pyrazole derivatives: A Review. Molecules, 23 (1), 134.
  • Kissinger, H.E. 1957. Reaction kinetics in differential thermal analysis, Analytical Chemistry, 29, 1702-1706.
  • Kurt, A. and Koca, M., 2016. Synthesis, characterization and thermal degradation kinetics of poly(3-acetylcoumarin-7-yl-methacrylate) and its organoclay nanocomposites, Journal of Engineering Research, 4 (4), 46-65.
  • Kurt, A. and Koca, M., 2022. Synthesis, characterization and thermal degradation kinetics of a new pyrazole derived methacrylate polymer, poly(1,3-diphenyl-1H-pyrazol-5-yl methacrylate), Acta Chimica Slovenica, 69(2), 466-477.
  • Kurt, A., 2009a. Dielectric properties of block copolymers of ethyl methacrylate with styrene. e-Journal of New World Sciences Academy Engineering Sciences, 4(2), 203-210.
  • Kurt, A., 2009b. Thermal decomposition kinetics of poly(nButMA-b-St) diblock copolymer synthesized by ATRP. Journal of Applied Polymer Science, 114(1), 624-629.
  • Kurt, A., 2017. Kumarin yan grup içeren poli(3-benzoil kumarin-7-il-metakrilat) homopolimerinin termal bozunma kinetiği. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 7(4), 113-121.
  • Kurt, A., Avcı, H.I. and Koca, M., 2018. Synthesis and characterization of a novel isocoumarin derived polymer and its thermal decomposition kinetics. Macedonian Journal of Chemistry and Chemical Engineering, 37 (2), 173-184.
  • Madhusudanan, P. M., Krishnan, K. and Ninan, K.N., 1993. New equations for kinetic-analysis of nonisothermal reactions. Thermochimica Acta, 221, 13-21.
  • Marzouk, M.I., Sayed, G.H., Abd ElHalim, M.S. and Mansour, S.Y., 2014. Synthesis and characterization of novel pyrazolone derivatives. European Journal of Chemistry, 5 (1), 24 32.
  • Matyjaszewski, K. and Xia, J., 2001. Atom Transfer Radical Polymerization. Chemical Reviews, 101 (9), 2921-2990.
  • Meng, X.L., Huang, Y.D., Yu, H. and Lv, Z., 2007. Thermal degradation kinetics of polyimide containing 2,6-benzobisoxazole units. Polymer Degradation and Stability, 92 (6), 962-967.
  • Moore, J.A. and Mehta, P.G., 1995. Synthesis and characterization of novel thermally stable polypyrazoles. Macromolecules, 28, 444-453.
  • Mukundam, V., Kumar, A., Dhanunjayarao, K., Ravi, A., Peruncheralathan, S. and Venkatasubbaiah, K., 2015. Tetraaryl pyrazole polymers: versatile synthesis, aggregation induced emission enhancement and detection of explosives. Polymer Chemistry, 6, 7764–7770.
  • Ng, H.M., Saidi, N.M., Omar, F.S., Ramesh, K., Ramesh, S. and Bashir, S., 2018. Thermogravimetric analysis of polymers. In Encyclopedia of Polymer Science and Technology, 1-29.
  • Nunez, L., Fraga, F., Nunez, M.R. and Villanueva, M., 2000. Thermogravimetric study of the decomposition process of the system BADGE (n=0)/1,2 DCH. Polymer, 41 (12), 4635–41.
  • Ozawa, T., 1986. Applicability of Friedman plot. Journal of Thermal Analysis, 31(3), 547-551.
  • Saçak, M., 2012. Polimer Kimyası, 6. Baskı, Gazi Kitabevi, Ankara, 407-435.
  • Scott, A.J. and Penlidis, A., 2017. Copolymerization, reference module in chemistry, Molecular Sciences and Chemical Engineering, Elsevier, 1-11.
  • Tang, W., Liu, Y., Zhang, H. and Wang, C., 2003. New approximate formula for Arrhenius temperature integral. Thermochimica Acta, 408, 39-43.
  • Turmanova, S.C., Genieva, S.D., Dimitrova, A.S. and Vlaev, L.T., 2008. Non-isothermal degradation kinetics of filled with rise husk ash polypropene composites. eXPRESS Polymer Letters, 2 (2), 133–146.
  • Van Krevelen, D.W., Van Herrden, C. and Hutjens, F.J., 1951. Kinetic study by thermogravimetry, Fuel, 30, 253-258.
  • Wang, S. and Cheng, B., 2017. One-pot synthesis of polypyrazoles by click reactions. Scientific Reports, 7, 12712.