Modifiye Sol-Jel Yöntemi Kullanılarak İtriya Katkılı Zirkonya Sentezi

Zirkonya, tıbbi uygulamalarda, diş rengine benzerliği, iyi mekanik ve biyoinert özellikleri nedeniyle yaygın olarak kullanılan seramik tozlarıdır. Yüksek sıcaklık formları MgO, CaO ve Y2O3 gibi oksitlerin eklenmesi ile tamamen veya kısmen dengelenebilir. Son zamanlarda, itriya stabilize zirkonya çoğunlukla avantajları nedeniyle incelenmiştir. Bu çalışmada, basit bir sol-jel işlemi kullanılarak %3 mol ve %8 mol itriya stabilize zirkonya tozları sentezlenmiştir. ZrO(NO3)2.xH2O ve Y(NO3)3.6H2O sırası ile etilen glikol ve saf su içerisinde çözündürüldü ve karıştırıldı. Karıştırmanın ardından pH, HNO3 ile 3.5'e ayarlandı. Elde edilen süspansiyon homojen hale gelinceye kadar karıştırıldı. Homojen karışım, 120°C'de kurutuldu ve daha sonra 1200°C'de sinterlendi. Elde edilen tozların kristal boyutları ve mineralojik kompozisyon XRD ile belirlenmiştir. Yüzey alanı BET metodu ile ölçülmüş ve partikül büyüklüğü hesaplanmıştır. Tozların yoğunluğu ise ultrapiknometre ile ölçülmüştür. Ayrıca SEM ile morfolojik yapı incelenmiştir. Tetragonal ZrO2 ve tetragonal ZrO2-Y2O3 fazları gözlendi. Mevcut çalışmalar, YSZ tozunun bu yöntemle etkili bir şekilde sentezlenebileceğini göstermektedir.

Synthesis of Yttria-Stabilized Zirconia (YSZ) Ceramic Powder Using Modified Sol-Gel Method

Zirconia is widely used ceramic powders as a biomaterial in medical applications due to its similaritywith tooth color, good mechanical and bioinert properties. Its high temperature forms can be fully orpartially stabilized by the addition of oxides such as MgO, CaO and Y2O3. Recently, yttria stabilizedzirconia has been mostly studied because of its lots of advantages. In this study, 3% mol and 8% molyttria stabilized zirconia powders have been synthesized using a simple sol-gel process. ZrO(NO3)2.xH2Oand Y(NO3)3.6H2O was dissolved in ethylene glycol and pure water, respectively and mixed together.After mixing pH was adjusted to 3.5 using HNO3. Final suspension was stirred until it becomeshomogenized. Homogeneous mixture dried at 120°C and then sintered at 1200°C. Crystallite sizes andmineralogical composition were determined by XRD. Surface area was measured by BET method andparticle size was calculated. Density of powders was measured by ultrapicnometer. Also, morphologicalstructure was examined by SEM. Tetragonal ZrO2 and tetragonal ZrO2-Y2O3 phases were observed.Current studies showed that YSZ powder can be effectively synthesis with the present method.

___

  • Amézaga-Madrid, P., Hurtado-Macías, A., AntúnezFlores, W., Estrada-Ortiz, F., Pizá-Ruiz, P., and MikiYoshida, M. (2012). Synthesis, microstructural, optical and mechanical properties of yttria stabilized zirconia thin films. Journal of Alloys and Compounds, 536, S412–S417.
  • Chen, S.-G., Yin, Y.-S., Wang, D.-P., and Li, J. (2004). Reduced activation energy and crystalline size for yttria-stabilized zirconia nano-crystals:: an experimental and theoretical study. Journal of Crystal Growth, 267(1–2), 100–109.
  • Denry, I., and Kelly, J. R. (2008). State of the art of zirconia for dental applications. Dental Materials, 24(3), 299–307.
  • Hsu, Y.-W., Yang, K.-H., Chang, K.-M., Yeh, S.-W., and Wang, M.-C. (2011). Synthesis and crystallization behavior of 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanosized powders prepared using a simple co-precipitation process. Journal of Alloys and Compounds, 509(24), 6864– 6870.
  • Kaya, G. (2013). Production and characterization of selfcolored dental zirconia blocks. Ceramics International, 39(1), 511–517.
  • Kelly, J. R., and Denry, I. (2008). Stabilized zirconia as a structural ceramic: an overview. Dental Materials, 24(3), 289–298.
  • Kuo, C.-W., Lee, Y.-H., Fung, K.-Z., and Wang, M.-C. (2005). Effect of Y2O3 addition on the phase transition and growth of YSZ nanocrystallites prepared by a sol–gel process. Journal of NonCrystalline Solids, 351(4), 304–311.
  • Manicone, P. F., Iommetti, P. R., and Raffaelli, L. (2007). An overview of zirconia ceramics: basic properties and clinical applications. Journal of Dentistry, 35(11), 819–826.
  • Piconi, C., and Maccauro, G. (1999). Zirconia as a ceramic biomaterial. Biomaterials, 20(1), 1–25.
  • Pilathadka, S., Vahalová, D., and Vosáhlo, T. (2007). The Zirconia: a new dental ceramic material. An overview. Prague Med Rep, 108(1), 5–12.
  • Ray, J. C., Pati, R. K., and Pramanik, P. (2000). Chemical synthesis and structural characterization of nanocrystalline powders of pure zirconia and yttria stabilized zirconia (YSZ). Journal of the European Ceramic Society, 20(9), 1289–1295.
  • Wang, C.-H., Wang, M.-C., Du, J.-K., Sie, Y.-Y., Hsi, C.-S., and Lee, H.-E. (2013). Phase transformation and nanocrystallite growth behavior of 2 mol% yttriapartially stabilized zirconia (2Y-PSZ) powders. Ceramics International, 39(5), 5165–5174.
  • Zhu, Q., and Fan, B. (2005). Low temperature sintering of 8YSZ electrolyte film for intermediate temperature solid oxide fuel cells. Solid State Ionics, 176(9–10), 889–894.
Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 2015
  • Yayıncı: AFYON KOCATEPE ÜNİVERSİTESİ