Mn Katkılı PIN-PMN-PT Tekil Kristalinin Dielektrik Katsayısı, Relaksiyon Zamanı ve Aktivasyon Enerjisinin Hesaplanması

Relaksör-ferroelektrik malzemeler 1950 li yıllarda keşfedilmiştir, birçok uygulamada kullanılmasınarağmen hala bazı mekanik ve elektrik özellikleri tam olarak anlaşılamamıştır. Özellikle ferroelektrik fazgeçişlerindeki, mekanik ve elektriksel davranımlarının sıcaklık bağımlılıklarını tam olarak modelleyebilenbir yaklaşım eksikliği vardır. Bu çalışmada, Landau fenomonolojik teori kullanılarak, Mn katkılı PIN-PMNPT tek kristal karışım malzemenin ferroelektrik rhombohedral-monoklinik faz geçişinde (TC=112 0C) 512ve 584 cm-1 Raman modları için; kendiliğinden polarizasyon, dielektrik duyarlık ve gevşeme zamanısıcaklığa bağlı olarak hesaplanmıştır. Landau fenomonolojik teoriden türetilen dielektrik duyarlıkbağıntısı, deneysel veriler ile uyumlu sonuçlar vermiştir. Ayrıca, ferroelektrik rhombohedral fazda farklısıcaklık aralıkları için aktivasyon enerjileri pseuode-spin fonon ve enerji dalgalanma model yaklaşımlarıkullanılarak hesaplanmıştır. Her iki model kullanılarak hesaplanan sönümleme sabiti değerlerimiz,gözlemlenen verilerle uyumlu çıkmıştır.

Calculation of Dielectric Coefficient, Relaxation Time and Activation Energy of Mn Compounded PIN-PMN-PT Mono Crystal

Relaxor-ferroelectric materials were discovered in the 1950s, and although they are used in many applications, some of their mechanical and electric properties have not fully understood yet. There haven't been an adequate approach that can precisely model the temperature dependencies of their mechanical and electrical behaviour, especially in ferroelectric phase transitions yet. In this study, using Landau phenomenological theory, Mn-doped PIN-PMN-PT single crystal mixture material ferroelectric rhombohedral-monoclinic phase transition (TC=112 0C) for 512 and 584 cm-1 Raman modes; spontaneous polarization, dielectric sensitivity and relaxation time were calculated based on temperature. The dielectric precision correlation derived from Landau phenomenological theory yielded results consistent with experimental data. Furthermore, activation energies for different temperature ranges in the ferroelectric rhombohedral phase were calculated using pseudospin Phonon and energy fluctuation model approaches. Our damping constant values, which were calculated using both models, were good well consistent with the observed data.

___

  • Blinc, R., Dolinšek, J., Gregorovič, A., Zalar, B., Filipič, C., Kutnjak, Z., Levstic, A. and Pirc, R., 1999. Local Polarization Distribution and Edwards-Anderson Order Parameter of Relaxor Ferroelectrics. Physical Review Letters, 83(2), 424-427.
  • Böttger, U., Biermann, A. and Arlt, G., 1992. PtP240. Phase transitions in PLZT ceramics. Ferroelectrics, 134(1), 253-258.
  • Burns, G. and Dacol, F.H., 1983. Glassy polarization behavior in ferroelectric compounds Pb(Mg1/3Nb2/3)O3 and Pb(Zn1/3Nb2/3)O3. Solid State Communications, 48(10), 853-856.
  • Colla, E.V., Koroleva, E.Y., Okuneva, N.M. and Vakhrushev, S.B., 1995. Long-Time Relaxation of the Dielectric Response in Lead Magnoniobate. Physical Review Letters, 74(9), 1681-1684.
  • Cowley, R.A., Gvasaliya, S.N., Lushnikov, S.G., Roessli, B. and Rotaru, G.M., 2011. Relaxing with relaxors: a review of relaxor ferroelectrics. Advances in Physics, 60(2), 229-327.
  • Cross, L.E., 1987. Relaxor ferroelectrics. Ferroelectrics, 76(1), 241-267.
  • Cross, L.E., 1993. Ferroelectric Ceramics: Tailoring Properties for Specific Applications, Paper presented at the Ferroelectric Ceramics, Basel.
  • Davis, M., Damjanovic, D. and Setter, N., 2005. Electricfield-induced orthorhombic to rhombohedral phase transition in [111]C-oriented 0.92Pb(Zn1∕3Nb2∕3)O3−0.08PbTiO3. Journal of Applied Physics, 97(6), 064101.
  • Davis, M., Damjanovic, D. and Setter, N., 2006. Electricfield-, temperature-, and stress-induced phase transitions in relaxor ferroelectric single crystals. Physical Review B, 73(1), 014115.
  • Hendrickson, J.R. and Bray, P.J., 1973. A phenomenological equation for NMR motional narrowing in solids. Journal of Magnetic Resonance, 9(3), 341-357.
  • Kim, I., Jang, K., Kim, I. and Li, L., 2018. Higher-order Landau phenomenological models for perovskite crystals based on the theory of singularities: a new phenomenology of BaTiO3. Phase Transitions, 91(3), 239-253.
  • Kurt, M., Yurtseven, H., Kurt, A. and Aksoy, S., 2019. Calculation of the infrared frequency and the damping constant (full width at half maximum) for metal organic frameworks. Chinese Physics B, 28(6), 066401.
  • Kutnjak, Z., Garland, C.W., Schatz, C.G., Collings, P.J., Booth, C.J. and Goodby, J.W., 1996. Critical point for the blue-phase-III--isotropic phase transition in chiral liquid crystals. Physical Review E, 53(5), 4955-4963.
  • Kutnjak, Z., Petzelt, J. and Blinc, R., 2006. The giant electromechanical response in ferroelectric relaxors as a critical phenomenon. Nature, 441(7096), 956- 959.
  • Lahajnar, G., Blinc, R. and Zumer, S., 1974. Proton spinlattice relaxation by critical polarization fluctuations in KH2PO4. Physics of condensed matter, 18(4), 301- 316.
  • Liu, F., Chen, J., Zhu, R., Zhao, J., Xue, S., Du, Q., Wang, F. and Luo, H., 2019. Temperature Dependence of Electrical Properties and Phase Transition Characteristics of [001]-Oriented Rhombohedral Mn0.15PIN-0.55PMN-0.30PT Single Crystal. Physica Status Solidi (a), 216(23), 1900457-1 - 1900457-6.
  • Liu, X., Fang, B., Deng, J., Yan, H., Deng, H., Yue, Q., Ding, J., Zhano, X. and Luo, H., 2016. Study of temperature- dependent Raman spectroscopy and electrical properties in [001]-oriented 0.35Pb(In1/2Nb1/2)O3- 0.35Pb(Mg1/3Nb2/3)O3-0.30PbTiO3-Mn single crystals. Journal of Applied Physics, 119(1), 014105-1 – 014105-6.
  • Lu, X., Fan, J., Zhang, H., Wu, H., Li, H., Cao, W., 2020. Phase stability and Landau phenomenological model of relaxor ferroelectric single crystals 0.78Pb(Mg1/3Nb2/3)O3-0.22PbTiO3, Ceramics International, (DOI: 10.1016/j.ceramint.2020.12.125).
  • Matsushita, M., 1976. Anomalous temperature dependence of the frequency and damping constant of phonons near Tλ in ammonium halides. The Journal of Chemical Physics, 65(1), 23-28.
  • Pirc, R., Blinc, R. and Kutnjak, Z., 2002. Nonlinear dielectric response of relaxor ferroelectrics. Physical Review B, 65(21), 214101-1 – 214101-7.
  • Qian, K., Fang, B., Du, Q., Ding, J., Zhao, X. and Luo, H., 2013. Phase development and electrical properties of Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics prepared by partial oxalate route. Physica Status Solidi (a), 210(6), 1149- 1156.
  • Schaack, G. and Winterfeldt, V., 1977. Temperature behaviour of optical phonons near Tc in triglycine sulphate and triglycine selenate. Ferroelectrics, 15(1), 35-41.
  • Sun, E., Qi, X., Yuan, Z., Sang, S., Zhang, R., Yang, B., Cao, W. and Zhao, L., 2016. Relaxation behavior in 0.24Pb(In1/2Nb1/2)O3–0.49Pb(Mg1/3Nb2/3)O3– 0.27PbTiO3 ferroelectric single crystal. Ceramics International, 42(4), 4893-4898.
  • Svitelskiy, O., Toulouse, J., Yong, G. and Ye, Z.G., 2003. Polarized Raman study of the phonon dynamics in PbMg1/3Nb2/3O3 crystal. Physical Review B, 68(10), 104107-1 – 104107-10.
  • Viehland, D. and Powers, J., 2001. Effect of uniaxial stress on the electromechanical properties of 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 crystals and ceramics. Journal of Applied Physics, 89(3), 1820-1825.
  • Wang, Y., Sun, E., Song, W., Li, W., Zhang, R. and Cao, W., 2014. Improved thermal stability of [001]c poled 0.24Pb(In1/2Nb1/2)O3–0.47Pb(Mg1/3Nb2/3)O3– 0.29PbTiO3 single crystal with manganese doping. Journal of Alloys and Compounds, 601, 154-157.
  • Westphal, V., Kleemann, W. and Glinchuk, M.D., 1992. Diffuse phase transitions and random-field-induced domain states of the ``relaxor'' ferroelectric PbMg1/3Nb2/3O3. Physical Review Letters, 68(6), 847- 850.
  • Yamada, Y., Mori, M. and Noda, Y., 1972. A Microscopic Theory on the Phase Transitions in NH4Br; An Ising Spin Phonon Coupled System. Journal of the Physical Society of Japan, 32(6), 1565-1576.
  • Yurtseven, H., Celik, M. and Karacali, H., 2017. Calculation of the Spontaneous Polarization and the Dielectric Constant for the Ferroelectric N(CH3)4HSO4 Using the Mean Field Model. High Temperature Materials and Processes, 36(9), 863-869.
  • Zhang, L.L. and Huang, Y.N., 2020. Theory of relaxorferroelectricity. Scientific Reports, 10(1), 5060-5077.
  • Zhao, X., Qu, W., Tan, X., Bokov, A.A. and Ye, Z.G., 2007. Electric field-induced phase transitions in (111)-, (110)- and (100)-oriented Pb(Mg1∕3Nb2∕3)O3 single crystals. Physical Review B, 75(10), 104106-1 – 104106-12.