İş Parçası Dinamiğinin Frezeleme Kararlılığına Etkisinin İncelenmesi

Frezeleme operasyonlarında tırlama titreşimleri üretkenliği olumsuz yönde etkileyen en önemli faktörlerden biridir. Kesme parametrelerine, Tezgâh/İş mili-takım tutucu-takım sistemi ve/veya iş parçası dinamiğine bağlı olarak ortaya çıkan bu titreşimler Tezgâh/İş mili ömrü, iş parçası yüzey ve boyut kalitesi, takım aşınması vb. gibi açılardan kritik bir önem taşımaktadır. Bu çalışmada frezeleme işleminde iş parçası dinamiği dikkate alınarak hem teorik hem de deneysel kararlılık analizleri yapılmıştır. İş parçası frekans tepki fonksiyonu temel faktör olarak değerlendirilip, her talaş kaldırma adımı için kararlılık diyagramları oluşturulmuştur. Tek serbestlik dereceli deney düzeneği üzerinde gerçekleştirilen frezeleme testleri ile de talaş kaldırmayla ortaya çıkan iş parçası dinamiği değişiminin kararlılık sınırlarına etkisi irdelenmiştir. Teorik ve deneysel çalışmalar neticesinde iş parçası dinamiği değişiminin kararlı ve kararsız kesme bölgelerinin değişimine yol açtığı gözlemlenmiştir. Elde edilen sonuçlar esnek iş parçalarının frezelenmesin de iş parçası dinamiğinin süreç verimliliği üzerinde kayda değer bir oranda etkisinin olduğunu ortaya çıkarmıştır.

Investigation of Workpiece Dynamics Influence on Milling Stability

Chatter vibrations are one of the most important factors that negatively affects the productivity in the milling operations. Those vibrations, which occur depending upon the cutting parameters, the Machine/Spindle-tool holder-tool assembly and/or the workpiece dynamics, have a critical importance in terms of the Machine/Spindle life, the workpiece surface and dimensional quality, tool wear etc. In this study, both theoretical and experimental stability analysis have been performed by taking into account the workpiece dynamics during the milling process. Stability lobe diagrams have been created for each material removal step by considering the workpiece frequency response function as a fundamental factor. Effect of the workpiece dynamics alteration arising due to the material removal on the stability limits has been examined with the milling tests performed on a single degree of freedom experimental setup. As a result of the theoretical and experimental work, it has been observed that the variation of the workpiece dynamics leads to change in the stable and unstable regions. The obtained results have revealed that the workpiece dynamics has remarkable influence on the process efficiency in the milling of the flexible workpieces.

___

  • Adetoro, O., Sim, W., Wen, P. 2010. An Improved Prediction of Stability Lobes using Nonlinear Thin Wall Dynamics. Journal of Materials Processing Technology, 210(6), 969–979.
  • Altintas, Y., Budak, E. 1995. Analytical Prediction of Stability Lobes in Milling. CIRP AnnalsManufacturing Technology, 44(1), 357–362.
  • Altintas, Y. 2001. Analytical Prediction of Three Dimensional Chatter Stability in Milling. JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 44(3), 717–723.
  • Altintas, Y., 2012. Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design. Cambridge University Press, Cambridge, 363.
  • Bravo, U., Altuzarra, O., De Lacalle, L.L., Sánchez, J., Campa, F. 2005. Stability Limits of Milling Considering the Flexibility of the Workpiece and the Machine. International Journal of Machine Tools and Manufacture, 45(15), 1669–1680.
  • Campa, F., de Lacalle, L.L., Lamikiz, A., Sanchez, J. 2007. Selection of Cutting Conditions for a Stable Milling of Flexible Parts with Bull-Nose End Mills. Journal of Materials Processing Technology, 191(1), 279–282.
  • Campa, F., De Lacalle, L.L., Celaya, A. 2011. Chatter Avoidance in the Milling of Thin Floors with BullNose End Mills: Model and Stability Diagrams. International Journal of Machine Tools and Manufacture, 51(1), 43–53.
  • Dang, X.B., Wan, M., Zhang, W.H. and Yang, Y., 2022. Stability Analysis of The Milling Process of the Thin Floor Structures. Mechanical Systems and Signal Processing, 165, 108311.
  • Eksioglu, C., Kilic, Z., Altintas, Y. 2012. Discrete Time Prediction of Chatter Stability, Cutting Forces, and Surface Location Errors in Flexible Milling systems. Journal of Manufacturing Science and Engineering, 134(6), 061006.
  • Fei, J., Xu, F., Lin, B. and Huang, T., 2020. State of the Art in Milling Process of the Flexible Workpiece. The International Journal of Advanced Manufacturing Technology, 109(5), 1695-1725.
  • Jiang, X., Wu, K., Zhang, Y. and He, S., 2022. Improved Vibration Suppression Modeling for Reinforcement Clamping by Eco-friendly Magnetorheological Fluid During Milling of Annular Thin-Walled Workpiece. International Journal of Precision Engineering and Manufacturing-Green Technology, 1-16.
  • Kiran, K., Rubeo, M., Kayacan, M.C., Schmitz, T., 2017. Two Degree of Freedom Frequency Domain Surface Location Error Prediction. Precision Engineering, 48, 234–242.
  • Kiran, K., Kayacan, M.C., 2019. Cutting Force Modeling and Accurate Measurement in Milling of Flexible Workpieces. Mechanical Systems and Signal Processing, 133, 106284.
  • Kiran, K., Kayacan, M.C., 2019. Effect of Material Removal on Workpiece Dynamics in Milling: Modeling and Measurement. Precision Engineering, 60, 506–519.
  • Li, D., Cao, H. and Chen, X., 2022. Active Control of Milling Chatter Considering the Coupling Effect of Spindle-Tool and Workpiece Systems. Mechanical Systems and Signal Processing, 169, 108769.
  • Ma, J., Li, Y., Zhang, D., Zhao, B., Wang, G. and Pang, X., 2022. Dynamic Response Prediction Model of Thin-Wall Workpiece-Fixture System with Magnetorheological Damping in Milling. Journal of Manufacturing Processes, 74, 500-510.
  • Rubeo, M.A., Schmitz, T.L. 2016. Global Stability Predictions for Flexible Workpiece Milling using Time Domain Simulation. Journal of Manufacturing Systems, 40, 8–14.
  • Rubeo, M.A., Schmitz, T.L. 2017. Amplitude Ratio: A New Metric for Milling Stability Identification. Procedia Manufacturing, 10, 351–362.
  • Smith, S., Tlusty, J. 1993. Efficient Simulation Programs for Chatter in Milling. CIRP AnnalsManufacturing Technology, 42(1), 463–466.
  • Smith, S., Tlusty, J. 1991. An Overview of Modeling and Simulation of The Milling Process. Journal of Engineering for Industry, 113(2), 169–175.
  • Smith, S.T., 2000. Flexures: Elements of Elastic Mechanisms. CRC Press, London, 423.
  • Schmitz, T.L., Smith, K.S., 2011. Mechanical Vibrations: Modeling and Measurement. Springer, New York, 373.
  • Thévenot, V., Arnaud, L., Dessein, G., CazenaveLarroche, G. 2006. Influence of Material Removal on the Dynamic Behavior of Thin-Walled Structures in Peripheral Milling. Machining Science and Technology, 10(3), 275-287.
  • Wan, M., Dang, X.B., Zhang, W.H. and Yang, Y., 2022. Chatter Suppression İn The Milling Process of the Weakly-Rigid Workpiece through a Moving Fixture. Journal of Materials Processing Technology, 299, 117293.
  • Wang, D., Ren, J. and Tian, W., 2022. Influences of Modal Shape and Tool Orientation on Evolution of Dynamic Responses in 5-Axis Milling of Thin-Walled Parts. The International Journal of Advanced Manufacturing Technology, 1-24.
  • Yuan, H., Wan, M., Yang, Y. and Zhang, W.H., 2021. Mitigation of Chatter in Thin-Wall Milling by Using Double-Side Support Device. The International Journal of Advanced Manufacturing Technology, 115(1), 213-232.
  • Zhang, X., Zhao, Z., Chen, K. and Zhao, W., 2022. Generalized Modeling of Milling Dynamics for the 4DOF Machining System with Asymmetric Flexibility. Mechanical Systems and Signal Processing, 169, 108750.