İnce Katman Aktivasyon Yöntemi için 48Ti(?,n)51Cr Reaksiyon Tesir Kesiti Hesabı

İnce Katman Aktivasyon Yöntemi, sanayide aşınma, korozyon ve erozyon hızlarının ölçülmesinde kullanılan en hassas ve güçlü yöntemdir. Yöntemde öncelikle araştırılmak istenen yüzeyde bir radyoaktif katman oluşturulur ve daha sonra burada oluşan aktivite ölçülerek yüzeydeki aşınma incelenir. Aktivitedeki değişimin katman kalınlığındaki azalma miktarına dönüştürülmesi için deneysel yada teorik bir kalibrasyon eğrisine ihtiyaç vardır. Teorik kalibrasyon eğrisi için ilgili maddenin durdurma gücü ve meydana gelen nükleer reaksiyonun tesir kesti enerjiye bağlı olarak çok hassas olarak bilinmelidir. Bu çalışmada havacılık, uzay ve sağlık endüstrisinde yaygın olarak kullanılan Titanyum ve alaşımlarının korozyonunu ve aşınmasını incelemek için, 48Ti(?,n)51Cr reaksiyonun tesir kesiti, farklı optik model potansiyelleri ve düzey yoğunluğu modelleri ile hesaplanmış ve literatürde bulunan deneysel sonuçlarla karşılaştırılmıştır.

Calculation of 48Ti(?,n)51Cr Reaction Cross Section for the Thin Layer Activation Method

The thin layer activation method for the corrosion and wear measurement at the industry is the most effective and precise method among the others. In the method, firstly a radioactive layer is formed on the surface to be investigated and then the activity occurring is measured to examine the wear on the surface. In order to convert the change in activity to the amount of decrease in layer thickness, a theoretical or experimental calibration curve is needed. For the theoretical calibration curve, the energy dependence in the related material stopping power and in the nuclear reaction cross sections have to be precisely known. In this study, to investigate the corrosion and wear of Titanium and its alloys widely used in aviation, aerospace and health industries, the cross section of the 48Ti(?,n)51Cr reaction were calculated using different optical model potentials and level intensity models, and compared with the experimental results at the literature.

___

  • Avrigeanu, V., Avrigeanu, M., M?n?ilescu, C. 2014. Further explorations of the ?-particle optical model potential at low energies for the mass range A?45- 209. Physical Review C, 90, 044612 .
  • Avrigeanu, V., Hodgson, P. E., Avrigeanu, M. 1994.Global optical potentials for emitted alpha particles.Physical Review C,49, 2136.
  • Baglin, C.M., Norman, E.B., Larimer, R., Rech, G.A. 2005. Measurement of 107Ag(?,?)111In Cross Sections. AIP Conference Proceedings. 769, 10.1063
  • Chowdhury, D.P., Chaudhuri, J., et al., 1989.Study of wear between piston ring and cylinder housing of an internal combustion engine by thin layer activation technique.Nucl. Instr. and Meth. B 42, 375.
  • Cioffi, M. Gilliland, D. Ceccone G., Chiesa, R. Cigada, A. 2005. Electrochemical release testing of nickel- titanium orthodontic wires in artificial saliva using thin layer activation. Acta Biomaterialia,1, 717-724
  • Conlon, T.W., 1982. Doping surface with radioactive atoms-for research and industry. Contemp. Phys.23, 353.
  • Demetriou, P. Grama C., Goriely, S. 2002. Improved global ?-optical model potentials at low energies.Nucl.Phys.A, 707, 253.
  • Demetriou, P., Goriely, S. 2001. Microscopic nuclear level densities for practical applications.Nucl.Phys.A,695, 95.
  • Dilg, W. ,Schantl, W., Vonach, H., Uhl, M. 1973. Level density parameters for the back-shifted fermi gas model in the mass range 40 _____ A _____ 250. Nucl.Phys.A, 217, 269.
  • Evans, R., 1980. Radioisotope methods for measuring engine wear: a thin layer activation for the measurement of cam follower wear and its comparison with a neutron activation method. Wear64, 311.
  • Garci, M.C., Macchim, G., et al., 2002. Electrochemical release testing of a stainless steel in a glucose solution using thin layer activation. Corros. Sci. 44, 129-143.
  • Gilbert, A. , Cameron, A.G.W. , 1965 A composite nuclear-level density formula with shell corrections.Can. J. Phys., 43,1446.
  • Goriely, S. Hilaire S., Koning, A.J. 2008.Improved microscopic nuclear level densities within the Hartree-Fock-Bogoliubov plus combinatorial method.Physical Review C,78, 064307.
  • Hilaire, S., Girod, M., Goriely, S., Koning, A.J. 2012.Temperature-dependent combinatorial level densities with the D1M Gogny force. Physical Review C ,86, 064317.
  • Hilaire, S., Goriely, S., 2006.Global microscopic nuclear level densities within the HFB plus combinatorial method for practical applications.Nucl.Phys.A779, 63.
  • Ignatyuk, A.V., Istekov, K.K., Smirenkin, G.N. 1979. The Role of Collective Effects in the Systematics of Nuclear Level Densities, Sov. J. Nucl. Phys. 29, 450.
  • Ignatyuk, A.V., Weil, J.L., Raman, S., Kahane, S. 1993. Density of discrete levels in116Sn. Physical Review C,47, 1504.
  • Koning, A. J., Hilaire, S., veDuijvestijn, M. C. in Proceedings of the International Conference on Nuclear Data for Science and Technology, April 22- 27, 2007, Nice, France.
  • Konstantinov, I.O., Krasnov, N.N., 1971. Determination of the wear of machine parts by charged particle surface activation. J. Radioanal. Chem.,8, 357.
  • McFadden, L., Satchler, G.R. 1966. Optical-model analysis of the scattering of 24.7 MeV alpha particles.Nucl.Phys. 84, 177.
  • Morton, A.J., Tims, S.G., Scott, A.F., Hansper, V.Y., Tingwell, C.I.W., Sargood D.G. 1992. The 48Ti(?,n)51Cr and 48Ti(?,p)51V cross sections. Nuclear Physics A, 537,167.
  • Nolte, M., Machner, H., Bojowald, 1987. Global optical potential for ? particles with energies above 80 MeV. Physical Review C,36, 1312.
  • Paul H. 2010. Recent results in stopping power for positive ions, and some critical comments, Nucl. Instr. Meth. B, 268, 3421.
  • Paul H. 2012. Comparing experimental stopping power data for positive ions with stopping tables, using statistical analysis, Nucl. Instr. Meth. B, 273, 15.
  • Paul H., Sanchez-Parcerisa D. 2013. A critical overview of recent stopping power programs for positive ions in solid elements, Nucl. Instr. Meth. B,312, 110 - 117.
  • Scharf, W., Niewczas, A., 1987. Traction studies of piston ring using an external radiometric method with proton activation. Nucl. Instr. and Meth. B22, 57. Stroosnijder, M.F., Brugnoni, C., et al., 2002.
  • Atmospheric corrosion evaluation of galvanised steel by thin layer activation. Corros. Sci.46, 2355-2359.
  • Vonach, H., Haight, R.C., Winkler, G. 1983. (?,n) and total ?-reaction cross sections for Ti-48 and V-51. Physical Review C, 28, 2278.
  • Wallace, G., Boulton, H.L., Hodder, D., 1989. Corrosion monitoring on a large steel pressure vessel by thinlayer activation, Corrosion 45, 1016.
  • Wallace, G., Pohl, K.P., Hutchinson, E.F., Hemmingen, I.D., 2001. The application of thin layer activation for on-line erosion monitoring, Appl. Radiat. Isot.55, 281.
  • Watanabe, S. 1958. High energy scattering of deuterons by complex nuclei.Nucl.Phys. 8, 484.
  • Yalçın, C. 2015. Thickness measurement using alpha spectroscopy and SRIM.Journal of Physics: Conference Series,590, 012050.
  • Yalçın, C., Gyürky, Gy., Rauscher, T., Kiss, G. G., Özkan, N, Güray, R. T., Halász, Z., Szücs, T., Fülöp, Zs., Farkas, J., Korkulu, Z., Somorjai, E. 2015. Test of statistical model cross section calculations for ?-induced reactions on107Ag at energies of astrophysical interest. Physical Review C, 91, 034610.
  • Ziegler J F, Biersack J P and Littmark U 1995 The Stopping and Range of Ions in Solids (New York:Pergamon Press). İnternet kaynakları
  • 1- www.nndc.bnl.gov/nudat2/(01.01.2017).
  • 2- www.srim.org (01.01.2017).
  • 3- www.thimet.org(01.01.2017).