Halid Aktive Edilmiş Kutu Sementasyon Yöntemi İle Paslanmaz Çeliğin Yüzey Modifikasyonunun Modellenmesi

Yüksek sıcaklık uygulamalarında demir esaslı malzemeler, beklenen mekanik özellikler, üretim kolaylığı, oda sıcaklığı korozyon direnci ve maliyet etkinliğinin kombinasyonlarından dolayı önemlidir. Fakat mekanik özellikler, çevresel etkilere karşı optimize edilmelidir. Endüstriyel uygulamaya bağlı olarak çeşitli korozyon türleri oluşabilir. Korozyona karşı korunurken yapısal alaşımın mekanik özelliklerinin de korunmasına yönelik bir yaklaşım, koruyucu kaplamaların uygulanmasıdır. Difüzyon kaplamaları, zararlı yüksek sıcaklık koşullarına karşı korozyon, oksidasyon, aşınma direncinin elde edilmesinde etkili bir yöntemdir. Literatürlere göre, halid aktive edilmiş kutu sementasyon yöntemi, demir esaslı malzemeler için uzun süredir yaygın olarak kullanılmaktadır. Bununla birlikte, kaplama uygulamalarının geliştirilmesi ile ilgili çalışmaların çoğu, mikroskobik, kimyasal ve mekanik analizleri içeren deneysel araştırmalara dayanmaktadır. Hesaplamalı alaşım yaklaşımlarına dayalı sınırlı çalışmalar yapılmıştır. Bu çalışmada, AISI 316L çeliğinin halid aktive edilmiş kutu sementasyonu ile Cr kaplanması bir difüzyonel problem olarak ele alınmış olup, kaplama kinetiği simülasyon çalışmaları ile incelenmiştir. Proses değişkenlerinin etkileri ve yüzeyde oluşturacakları kaplama tabaka bileşimleri termodinamik olarak Thermo-Calc ve kinetik olarak DICTRA ile modellenmiştir. Bu yaklaşım katı hal difüzyonlarının proses parametrelerine bağımlılığını ve kaplama ve altlık malzemesi boyunca oluşan fazların daha iyi anlaşılmasını sağlar.

Modeling of Surface Modification of Stainless Steel by Halide Activated Pack Cementation Method

In high-temperature applications, ferrous-based materials are important due to their excellent combination of desirable mechanical properties, ease of production, corrosion resistance at room temperature and cost-effectiveness. However, mechanical properties must be optimized against environmental effects. Depending on the industrial applications, various corrosion types may also occur. An approach to preserve the mechanical properties of the structural alloy being protected against corrosion is the application of protective coatings to the surfaces. Diffusion coatings are an effective method to obtain corrosion, oxidation and abrasion resistance against detrimental conditions of high temperature. According to the literature, the halide activated pack cementation method has been widely used for ferrous-based materials for a long time. However, most studies concerned with developing coating applications are based on experimental investigations that include microscopic, chemical, and mechanical analyses. Limited studies have been conducted based on computational alloy approaches. In this study, Cr coating of the AISI 316L steel by halide activated pack cementation method was considered as a diffusional problem and the kinetics of the coating deposition process were examined. The effect of process variables such as temperature, time and the compositions of coating layers formed on the surfaces were investigated thermodynamically with Thermo-Calc software and kinetically with DICTRA module. This approach provides insight into the dependence of solid-state diffusions on the processing parameters, and a better understanding of the phases that form along the coating and substrate material.

___

  • ASM Handbook, 2003. Volume 13A, Corrosion: Fundamentals, Testing, and Protection. APA (6th ed.) ASM International.
  • Bianco, R., Harper, M. A., Rapp, R. A., 1991. Co-depositing elements by halide activated pack cementation. The Journal of The Minerals, Metals & Materials Society, 43(11), 68-73.
  • Bianco, R., Rapp, R. A., 1996. Pack Cementation Diffusion Coatings, In: Stern K.H. (eds) Metallurgical and Ceramic Protective Coatings, Springer, Dordrech.
  • Borgenstam, A., Höglund, L., Ågren, J., Engström, A., 2012. DICTRA, a tool for Simulation of Diffusional Transformations in Alloys. Journal of Phase Equilibria, 21, 269-280, 10.1361/105497100770340057.
  • Casteletti, L. C., Fernandes, F. A. P., Heck, S. C., Oliveira, C. K. N., Lombardi, A. N., Totten, G. E., 2009. Pack and Salt Bath Diffusion Treatments on Steels. Heat. Treat. Progr, 9, 49-52.
  • Chen, J. K., Chen, S. F., Huang, C. S., 2012. Formation of Al and Cr Dual Coatings by Pack Cementation on SNCM439 Steel. ISIJ International, (52)1, 127-133.
  • Cho, K. H., Lee, W. G., Lee, S. B., Jang, H., 2008. Corrosion Resistance of Chromized 316L Stainless Steel for PEMFC Bipolar Plates. Journal of Power Sources, 178, 671-676.
  • Dong, Z., Zhou, T., Liu, J., Zhang, X., Shen, B., Hu, W., Liu, L. 2019. Performance of Surface Chromizing Layer on 316L Stainless Steel for Proton Exchange Membrane Fuel Cell Bipolar Plates. International Journal of Hydrogen Energy, 44, 22110-22121.
  • Hu, J., Zeng, J., Yang, Y., Yang, X., Li, H., Guo, N. 2019. Microstructures and Wear Resistance of Boron-Chromium Duplex-Alloyed Coatings Prepared by a Two-Step Pack Cementation Process. Coatings, 9(9), 529.
  • Kučera, P., Mazancová, E., 2014. Structural-Mechanical Properties of V-N Microalloyed 34CrMo4 Steel After Control Cooling Process. Metal Conference, May 21-23, Brno, Czech Republic, EU.
  • Kong, J. H., Takeda, T., Okumiya, M., Tsunekawa, Y., Yoshida, M., Ki, S. G., 2012. The study about surface modification of steel by water plasma. 13th International Conference on Plasma Surface Engineering, September 10-14, Garmisch-Partenkirchen, Germany, 157-160.
  • Krauss, G., 1992. Advanced Surface Modification of Steels. J. Heat Treating, 9, 81-89.
  • Krastev, D. 2012. Improvement of Corrosion Resistance of Steels by Surface Modification. Corrosion Resistance, Dr Shih (Ed.), ISBN: 978-953-51-0467-4, InTech.
  • Li, Y., Fang, W., Lu, C., Gao Z., Ma, X., Jin, W., Ye, Y., Wang, F., 2019. Microstructure and Mechanical Properties of 34CrMo4 Steel for Gas Cylinders Formed by Hot Drawing and Flow Forming. Materials, 12, 1351.
  • Ravi, V. A., 2003. Pack Cementation Coatings, Corrosion: Fundamentals, Testing, and Protection, Vol 13A, ASM Handbook, ASM International, 763–771.
  • Sahoo, P., Das, S. K., Davim, J. P., 2017. Surface finish coatings. Comprehensive Materials Finishing, 3-3, 38-55.
  • Smith, K. L., Kutyan, A., Abolian, S. A., Krenek, T. F., Salas, S. A., Ravi, V. A., 2013. Aluminide coatings on 304 stainless steel. Corrosion, 17-21 March, Orlando, Florida.
  • Souza, J. S. de , Oliveira, L. A. de , Sayeg, I. J. , Antunes, R. A., 2017. Electrochemical Study of the AISI 409 Ferritic Stainless Steel: Passive Film Stability and Pitting Nucleation and Growth. Materials Research, 20(6), 1669-1680.
  • T. C. Software, DICTRA User Guide Version 2015b, 2015. Foundation of Computational Thermodynamics, Stockholm, Sweden.
  • T. C. Software, Thermo-Calc User Guide Version 2016a, 2016. Foundation of Computational Thermodynamics, Stockholm, Sweden Tian, X., Guo, X., 2009. Structure of Al-modified silicide coatings on an Nb-based ultrahigh temperature alloy prepared by pack cementation techniques. Surface & Coatings Technology, 203, 1161-1166.
  • Wierzba, B., Tkacz-Smiech, K., Nowotnik, A., Dychton, K. 2014. Aluminizing of nickel alloys by CVD: The effect of HCl flow. Chem. Vap. Deposition, 20, 80-90.
  • https://www.thebalance.com/type-316-and-316l-stainless-steel-2340262, (02.03.2019)