Grafen Oksit/Altın/Polianilin Nanokompozitlerinin Eş Zamanlı Çöktürme/Polimerizasyon Yöntemleriyle Sentezi ve Fototermal Performansı

Bu çalışmada, grafen oksit (GO) üzerinde tek basamakta altın tuzunun (HAuCl4) indirgenmesi ve anilin monomerinin polimerize edilmesiyle GO/Au/Polianilin (PANI) nanokompozitleri faklı bileşimlerde sentezlenmiş, karakterize edilmiş ve 808 nm dalgaboyuna sahip bir lazer ile fototermal özellikleri incelenmiştir. 1.5 W/cm2 lazer güç yoğunluğunda 0.1 mg/mL derişime sahip nanokompozit dispersiyonları arasında 10 dakikalık ısıtma işlemi sonucunda ulaşılan en yüksek sıcaklık GO1-Au-PANI4 nanokompozitinde 62.6 °C, en yüksek fototermal dönüşüm verimi ise 0.384 olmuştur. Bu nanokompozit üzerinde tekrarlı ısıtma soğutma deneyleri gerçekleştirilmiş ve ulaşılan en yüksek sıcaklıkta kayda değer bir değişiklik gözlenmemiştir. GO/Au/PANI nanokompozitinin tek basamaklı kolay sentez yöntemi ve yüksek fototermal performansı ile umut verici bir fotoajan olduğu tespit edilmiştir.

Synthesis and Photothermal Performance of Graphene Oxide/Gold/Polyaniline Nanocomposites via Simultaneous Precipitation/Polymerization Methods

In this study, GO/Au/Polyaniline (PANI) nanocomposites were synthesized by a single step via reduction of gold salt (HAuCl4) on graphene oxide (GO) and polymerization of aniline monomer. Nanocomposites prepared with different compositions were characterized and their photothermal properties were investigated using a laser having a wavelength of 808 nm. Among the nanocomposite dispersions with 0.1 mg/mL concentration, the highest temperature achieved with 10 minutes of heating at a laser power density of 1.5 W/cm2 was 62.6 °C, and the highest photothermal conversion efficiency was 0.384 in GO1-Au-PANI4 nanocomposite. Repeated heating and cooling experiments were carried out on this nanocomposite and no significant change was observed on the maximum temperature. GO/Au/PANI nanocomposite is found to be a promising photoagent with its easy one-step synthesis method and high photothermal performance.

___

  • Bedeloğlu, A., ve Mahmut, T.A.Ş., 2016. Grafen ve grafen üretim yöntemleri. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 16(3), 544-554. https://doi.org/10.5578/fmbd.32173
  • Chen, H., Liu, Z., Li, S., Su, C., Qiu, X., Zhong, H., Guo, Z., 2016. Fabrication of graphene and AuNP core polyaniline shell nanocomposites as multifunctional theranostic platforms for SERS real-time monitoring and chemo-photothermal therapy. Theranostics, 6(8), 1096. https://doi.org/10.7150/thno.14361
  • de Melo-Diogo, D., Lima-Sousa, R., Alves, C. G., Costa, E. C., Louro, R. O., Correia, I. J., 2018. Functionalization of graphene family nanomaterials for application in cancer therapy. Colloids and Surfaces B: Biointerfaces, 171, 260-275. https://doi.org/10.1016/j.colsurfb.2018.07.030
  • Doyen, M., Bartik, K., Bruylants, G., 2013. UV–Vis and NMR study of the formation of gold nanoparticles by citrate reduction: Observation of gold–citrate aggregates. Journal of Colloid and Interface Science, 399, 1-5. https://doi.org/10.1016/j.jcis.2013.02.040
  • Feng, X., Chen, N., Zhou, J., Li, Y., Huang, Z., Zhang, L., Ma, Y., Wang, L., Yan, X., 2015. Facile synthesis of shape-controlled graphene–polyaniline composites for high performance supercapacitor electrode materials. New Journal of Chemistry, 39(3), 2261-2268. https://doi.org/10.1039/C4NJ01843E
  • Gorduk, O. 2021. Voltammetric determination of vanillin in commercial food products using electrochemically fabricated graphene oxide modified electrode. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 21(1), 84-96. https://doi.org/10.35414/akufemubid.819216
  • Haba, Y., Segal, E., Narkis, M., Titelman, G. I., Siegmann, A., 1999. Polymerization of aniline in the presence of DBSA in an aqueous dispersion. Synthetic Metals, 106(1), 59-66. https://doi.org/10.1016/S0379-6779(99)00100-9
  • Han, M. G., Cho, S. K., Oh, S. G., Im, S. S., 2002. Preparation and characterization of polyaniline nanoparticles synthesized from DBSA micellar solution. Synthetic Metals, 126(1), 53-60. https://doi.org/10.1016/S0379-6779(01)00494-5
  • Huang, P., Lin, J., Li, W., Rong, P., Wang, Z., Wang, S., Wang, X., Sun, X., Aronova, M., Niu, G., Leapman, R.D., Nie, Z., Chen, X., 2013. Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy. Angewandte Chemie, 125(52), 14208-14214. https://doi.org/10.1002/ange.201308986
  • Jain, P. K., El-Sayed, I. H., El-Sayed, M. A., 2007. Au nanoparticles target cancer. Nano today, 2(1), 18-29. https://doi.org/10.1016/S1748-0132(07)70016-6
  • Jaque, D., Maestro, L. M., del Rosal, B., Haro-Gonzalez, P., Benayas, A., Plaza, J. L., Martin Rodriguez, E., Solé, J. G., 2014. Nanoparticles for photothermal therapies. Nanoscale, 6(16), 9494-9530. https://doi.org/10.1039/C4NR00708E
  • Ji, M., Liu, H., Cheng, M., Huang, L., Yang, G., Bao, F., Huang, G., Huang, Y., Hu, Y., Cong, G., Yu, J., Zhu, C., Xu, J., 2022. Plasmonic metal nanoparticle loading to enhance the photothermal conversion of carbon fibers. The Journal of Physical Chemistry C, 126(5), 2454-2462. https://doi.org/10.1021/acs.jpcc.1c10792 Kucekova, Z., Humpolicek, P., Kasparkova, V., Perecko, T., Lehocký, M., Hauerlandova, I., Saha, P., Stejskal, J., 2014. Colloidal polyaniline dispersions: antibacterial activity, cytotoxicity and neutrophil oxidative burst. Colloids and Surfaces B: Biointerfaces, 116, 411-417. https://doi.org/10.1016/j.colsurfb.2014.01.027
  • Misoon, O., Seok, K., 2012. Effect of dodecyl benzene sulfonic acid on the preparation of polyaniline/activated carbon composites by in situ emulsion polymerization. Electrochimica Acta, 59, 196-201. https://doi.org/10.1016/j.electacta.2011.10.058
  • Neelgund, G. M., Bliznyuk, V. N., Oki, A., 2016. Photocatalytic activity and NIR laser response of polyaniline conjugated graphene nanocomposite prepared by a novel acid-less method. Applied Catalysis B: Environmental, 187, 357-366. https://doi.org/10.1016/j.apcatb.2016.01.009
  • Robinson, J. T., Tabakman, S. M., Liang, Y., Wang, H., Sanchez Casalongue, H., Vinh, D., Dai, H., 2011. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. Journal of the American Chemical Society, 133(17), 6825-6831. https://doi.org/10.1021/ja2010175
  • Tan, J., Namuangruk, S., Kong, W., Kungwan, N., Guo, J., Wang, C., 2016. Manipulation of amorphous‐to‐crystalline transformation: Towards the construction of covalent organic framework hybrid microspheres with NIR photothermal conversion ability. Angewandte Chemie International Edition, 55(45), 13979-13984. https://doi.org/10.1002/anie.201606155
  • Wang, Y., Black, K. C., Luehmann, H., Li, W., Zhang, Y., Cai, X., Wan, D., Liu, S., Li, M., Kim, P., Li, Z., Wang, L.W., Liu, Y., Xia, Y., 2013. Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment. ACS Nano, 7(3), 2068-2077. https://doi.org/10.1021/nn304332s
  • Wang, Y., Yang, Y., Yang, L., Lin, Y., Tian, Y., Ni, Q., Wang, S., Ju, H., Guo, J., Lu, G., 2022. Gold Nanostar@ Polyaniline Theranostic Agent with High Photothermal Conversion Efficiency for Photoacoustic Imaging-Guided Anticancer Phototherapy at a Low Dosage. ACS Applied Materials & Interfaces, 14(25), 28570-28580. https://doi.org/10.1021/acsami.2c05679
  • Xu, Z., Gao, H., Guoxin, H., 2011. Solution-based synthesis and characterization of a silver nanoparticle–graphene hybrid film. Carbon, 49(14), 4731-4738. https://doi.org/10.1016/j.carbon.2011.06.078
  • Yang, N., Zhai, J., Wan, M., Wang, D., Jiang, L., 2010. Layered nanostructures of polyaniline with graphene oxide as the dopant and template. Synthetic Metals, 160(15-16), 1617-1622. https://doi.org/10.1016/j.synthmet.2010.05.029
  • Yslas, E. I., Ibarra, L. E., Molina, M. A., Rivarola, C., Barbero, C. A., Bertuzzi, M. L., Rivarola, V. A., 2015. Polyaniline nanoparticles for near-infrared photothermal destruction of cancer cells. Journal of Nanoparticle Research, 17, 1-15. https://doi.org/10.1007/s11051-015-3187-y
  • Zhou, J., Lu, Z., Zhu, X., Wang, X., Liao, Y., Ma, Z., Li, F., 2013. NIR photothermal therapy using polyaniline nanoparticles. Biomaterials, 34(37), 9584-9592. https://doi.org/10.1016/j.biomaterials.2013.08.075