Domateste Tuz Stresi İle Mücadelede Potansiyel Bir Organik Madde Olan Kitosanın Rolü

Domates yetiştiriciliğinde verim kayıplarına neden olan kritik faktörlerden birisi toprak tuzluluğudur. Tuzluluğun neden olduğu stres ile mücadele son zamanlarda küresel bir konu haline gelmiştir. Kitosanın abiyotik streslerin bitkiler üzerinde neden olduğu zararlı etkilerini azaltmada rolü olduğu bilinmektedir. Toksik olmayan, biyolojik olarak uyumlu, biyolojik olarak parçalanabilen ve organik bir takviye olarak kullanılan kitosan, tarımsal üretimde son yıllarda büyük ilgi görmektedir. Bu çalışmada, tuz stresi altındaki domates fidelerinde kitosanın morfolojik büyüme parametrelerine etkisi ve çekirdek hasarını iyileştirmedeki rolü incelenmiştir. Domates fidelerinde tuz hasarının boyutu ve kitosanın buna karşı etkisi morfolojik parametreler ve Comet assay ile DNA hasarı değerlendirilmiştir. Tuz stresinin fideler üzerindeki morfolojik etkisi bitki boyu, gövde yüksekliği, gövde çapı, yaprak alanı ve yaprak sapı uzunluğu verilerinden elde edilmiştir. Stres etkisiyle oluşan DNA hasar düzeyi, DNA hasarının göstergesi olarak kabul edilen kuyruk uzunluğu, kuyruk DNA % değeri ve kuyruk momenti ile belirlenmiştir. Uygulanan kitosanın domates fidelerinin morfolojik özellikleri üzerinde olumlu etkisi olduğu saptanmıştır. Kitosan takviyesinin bazı dozlarda DNA hasarını azaltmada etkili olmuştur. Çalışma sonuçlarımız uygulanan tuzun domates fidelerinde doz miktarına bağlı olarak strese neden olduğunu ve kitosanın domates fidelerini tuz stresinin yıkıcı etkilerinden korumak için etkin bir şekilde kullanılabileceğini ortaya koymuştur.

The Role of Chitosan, a Potential Organic Substance, in Combating Salt Stress in Tomato

Soil salinity is one of the critical factors that cause yield losses in tomato cultivation. Dealing with stress caused by salinity has recently become a global issue. It is known that chitosan has a role in reducing the harmful effects of abiotic stresses on plants. Chitosan, which is used as a non-toxic, biocompatible, biodegradable, and organic supplement, has attracted great interest in agricultural production in recent years. In this study, the effect of chitosan on morphological growth parameters and its role in healing seed damage in tomato seedlings under salt stress was investigated. The extent of salt damage in tomato seedlings and the effect of chitosan against it was evaluated by morphological parameters and DNA damage by Comet assay. The morphological effect of salt stress on seedlings was obtained from plant height, stem height, stem diameter, leaf area, and petiole length data. The level of DNA damage caused by stress was determined by the tail length, tail DNA % value, and tail moment, which are considered as indicators of DNA damage. It was determined that the applied chitosan had a positive effect on the morphological characteristics of tomato seedlings. It was determined that chitosan supplementation was effective in reducing DNA damage at some doses. Our study results determined that the applied salt caused stress in tomato seedlings depending on the dose and chitosan could be used effectively to protect tomato seedlings from the destructive effects of salt stress. It can also be used to detect DNA damage in future studies with the comet assay technique.

___

  • Ahmad, W., Zahir, A., Nadeem, M., Garros, L., Drouet, S., Renouard, S., . Abbasi, B. H., 2019. Enhanced production of lignans and neolignans in chitosan-treated flax (Linum usitatissimum L.) cell cultures. Process biochemistry, 79, 155-165.
  • Ashour, H.A., Esmail, S.E.A., Kotb M.S., 2020. Ornamental horticulture. OrnamentalHorticulture, 27 (1), pp. 88-102
  • Bakhoum, G.S., Sadak, M.S., Badr, E.A.E.M., 2020. Mitigation of adverse effects of salinity stress on sunflower plant (Helianthus annuus L.) by exogenous application of chitosan. Bulletin of the National Research Centre, 44 (1), 10.1186/s42269-020-00343-7
  • Bulut, H., 2020. Arpada Tuz Stresine Karşı Zingeronun Koruyucu Etkisi. Journal of the Institute of Science and Technology, 10 (4) , 2932-2942. DOI: 10.21597/jist.686577
  • Garude, N.R., Vemula, A.N., 2019. Seed priming with chitosan for enhanced plant growth under salt stress. Retrieved from, 9 (3), pp. 6-11
  • Gerami, M., Majidian, P., Ghorbanpour, A., Alipour Z., 2020. Stevia rebaudiana bertoni responses to salt stress and chitosan elicitor. Physiology and Molecular Biology of Plants, 26 (5), pp. 965-974, 10.1007/s12298-020-00788-0
  • Golkar, P., Taghizadeh, M., Yousefian, Z., 2019. The effects of chitosan and salicylic acid on elicitation of secondary metabolites and antioxidant activity of safflower under in vitro salinity stress. Plant Cell, Tissue and Organ Culture, 137 (3), pp. 575-585, 10.1007/s11240-019-01592-9
  • Gyori, B. M., Venkatachalam, G., Thiagarajan, P. S., Hsu, D., Clement M.V., 2014. an automated tool for comet assay image analysis. Redox Biology, 9 (2) :457-65. doi: 10.1016/j.redox.2013.12.020. eCollection 2014.
  • Hassan, F.A.S., Ali, E., Gaber, A., Fetouh, M.I., Mazrou, R. 2021. Chitosan nanoparticles effectively combat salinity stress by enhancing antioxidant activity and alkaloid biosynthesis in Catharanthus roseus (L.) G. Don. Plant Physiology and Biochemistry, 162, pp. 291-300, 10.1016/j.plaphy.2021.03.004
  • Hernández-Hernández, H., Juárez-Maldonado, A., Benavides-Mendoza, A., Ortega-Ortiz, H., Cadenas-Pliego, G., Sánchez-Aspeytia, D., González-Morales, S., 2018. Chitosan-PVA and copper nanoparticles improve growth and overexpress the SOD and JA genes in tomato plants under salt stress. Agronomy, 8 (9), 10.3390/agronomy8090175
  • Hidangmayum, A., Dwivedi, P., Katiyar, D., and Hemantaranjan, A., 2019. Application of chitosan on plant responses with special reference to abiotic stress. Physiology and molecular biology of plants, 25 (2), 313-326.
  • Jabeen, N., Ahmad, R., 2013. The activity of antioxidant enzymes in response to salt stress in safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.) seedlings raised from seed treated with chitosan. Journal of the Science of Food and Agriculture, 93 (7), pp. 1699-1705, 10.1002/jsfa.5953
  • Kang, L.Y. Lu, Q.S. Shao, H.B. Shi, P., 2017. Effects of drought on NDVI of winter wheat growth in Binzhou irrigation region. Jiangsu J. Agric. Sci., 33, pp. 83-93 Li, X.X., Huang, P. Zhuang, Du H.D., 2016. Research advances of stress tolerance in sweet sorghum. Jiangsu J. Agric. Sci., 32, pp. 1429-1433
  • Mosavikia, A.A., Mosavi, S.G., Seghatoleslami, M., Baradaran R., 2020. Chitosan nanoparticle and pyridoxine seed priming improves tolerance to salinity in milk thistle seedling [Silybum marianum (L.) gaertn.].Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48 (1), pp. 221-233, 10.15835/NBHA48111777
  • Mukherjee, A., Gichner, T., 2009. Plant bioassays: comet assay in higher plants. Research Methods Plant Sciences, 1 (), pp. 97-108
  • Muley, A.B., Shingote, P.R., Patil, A.P., Dalvi, S.G., Suprasanna, P., 2019. Gamma radiation degradation of chitosan for application in growth promotion and induction of stress tolerance in potato (Solanum tuberosum L.). Carbohydrate polymers, 210, 289-301.
  • Oliveira, H.C., Gomes, B.C.R., Pelegrino, M.T., Seabra. A.B., 2016. Nitric oxide-releasing chitosan nanoparticles alleviate the effects of salt stress in maize plants. Nitric Oxide - Biology and Chemistry, 61, pp. 10-19, 10.1016/j.niox.2016.09.010
  • Rabêlo, V.M., Magalhães, P.C., Bressanin, L.A., Carvalho, D.T., dos Reis, C.O., Karam, D., de Souza, T.C., 2019. The foliar application of a mixture of semisynthetic chitosan derivatives induces tolerance to water deficit in maize, improving the antioxidant system and increasing photosynthesis and grain yield. Scientific Reports, 9 (1), pp. 1-13, 10.1038/s41598-019-44649-7
  • Safikhan, S., Khoshbakht, K., Chaichi, M.R., Amini, A., Motesharezadeh, B., 2018. Role of chitosan on the growth, physiological parameters and enzymatic activity of milk thistle (Silybum marianum (L.) Gaertn.) in a pot experiment. Journal of Applied Research on Medicinal and Aromatic Plants, 10, pp. 49-58, 10.1016/j.jarmap.2018.06.002
  • Sen, S.K., Chouhan, D., Das, D., Ghosh, R., Mandal, P., 2020. Improvisation of salinity stress response in mung bean through solid matrix priming with normal and nano-sized chitosan. International Journal of Biological Macromolecules, 145, pp. 108-123, 10.1016/j.ijbiomac.2019.12.170
  • Sen, S.K., Mandal, P., 2016. Solid matrix priming with chitosan enhances seed germination and seedling invigoration in mung bean under salinity stress. Journal of Central European Agriculture, 17 (3), pp. 749-762, 10.5513/JCEA01/17.3.1773
  • Shams P.L., 2018. Effect of chitosan on antioxidant enzyme activity, proline, and malondialdehyde content in Triticum aestivum L. and Zea maize L. under salt stress condition. Plant Physiology, 9 (1), 2661-2670.
  • Sheikhalipour, M., Esmaielpour, B., Behnamian, M., Gohari, G., Giglou, M.T., Vachova, P., Skalicky, M., 2021. Chitosan–selenium nanoparticle (Cs–Se np) foliar spray alleviates salt stress in bitter melon. Nanomaterials, 11 (3), pp. 1-23, 10.3390/nano11030684
  • Su, L.J., Zhang, J.H., Gomez, H., Murugan, R., Hong, X., Xu, D., Peng, Z.Y. 2019. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxidative Medicine and Cellular Longevity, 10.1155/2019/5080843
  • Tice, R.R., Agurell, E., Anderson, D., Burlinson, B., Hartmann, A., Kobayashi, H, Miyamae, Y., Rojas, E., Ryu, J.C., Sasaki, Y.F., 2000. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen, 35 (3) :206-21. doi: 10.1002/(sici)1098-2280(2000)35:3<206::aid-em8>3.0.co;2-j.
  • Turk, H. 2019. Chitosan-induced enhanced expression and activation of alternative oxidase confer tolerance to salt stress in maize seedlings. Plant Physiology and Biochemistry, 141, pp. 415-422, 10.1016/j.plaphy.2019.06.025
  • Ullah, N., Basit, A., Ahmad, I., Ullah, I., Shah, S.T., Mohamed, H.I., Javed, S., 2020. Mitigation the adverse effect of salinity stress on the performance of the tomato crop by exogenous application of chitosan. Bulletin of the National Research Centre, 44 (1), 10.1186/s42269-020-00435-4
  • Zayed, M., Elkafafi, S., Zedan, A., Dawoud, S., 2017. Effect of Nano chitosan on growth, physiological and biochemical parameters of Phaseolus vulgaris under salt stress. Journal of Plant Production, 8 (5), pp. 577-585,
  • Zhou, J., Wu, J.C., Du, B.M., Li, P.L., 2016. A comparative study on drought resistances of four species of lianas. Jiangsu J. Agric. SCI, 32, pp. 674-679
Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi-Cover
  • Yayın Aralığı: 6
  • Başlangıç: 2015
  • Yayıncı: AFYON KOCATEPE ÜNİVERSİTESİ