Ex-situ PTH/PEDOT Kompozitlerinin Termoelektrik Özellikleri

Bir termoelektrik malzeme, sıcaklık farkını elektriksel potansiyel farkına dönüştürebilir. Günümüzde termoelektrik malzeme olarak kullanılan sert, şekillendirilmesi zor, pahalı ve toksik yarı iletken metaller yerine esnek, toksik olmayan ve ucuz iletken polimerlerin kullanılması için yoğun araştırmalar yapılmaktadır. Bu amaçla araştırılan iletken polimerler arasında poli(3,4-etilendioksitiyofen) (PEDOT) en umut verici olanıdır. Ancak termoelektrik özellikleri tek başına yeterli değildir. Termoelektrik özellikler inorganik, organik veya polimerik yapılardaki nanopartikülleri iletken polimerlere ekleyerek artırılabilir. Bu çalışmada ilk olarak PTh, poli(sülfonik asit difenil anilin) varlığında, manyetik alanlı ve manyetik alansız sulu ortamda oksidatif polimerizasyon ile sentezlendi. İkinci olarak, PEDOT, oksidatif polimerizasyon yoluyla, manyetik alanlı ve manyetik alansız sulu ortamda sentezlendi. Daha sonra, farklı PTh/PEDOT oranları ile ex-situ PTH/PEDOT kompozitleri elde edildi. Polimerlerin partikül büyüklükleri ölçülmüş ve FTIR ve UV-vis. spektrumları alındı. Polimerlerin ince filmlerinden Seebeck katsayısı ve elektriksel iletkenlik ölçüldü. Güç faktörü değerleri hesaplandı. PTh ve ex-situ PTH/PEDOT kompozitlerinin Seebeck katsayılarının manyetik alanla arttığı bulundu. PEDOT'ların en yüksek Seebeck katsayısı ve güç faktörü sırasıyla, 1683,3 µV/K ve 98,2 µW/mK2 olarak manyetik alan olmadan sentezlenen PEDOT'tan elde edildi. Ex-situ PTh/PEDOT kompozitlerin en yüksek Seebeck katsayısı ve güç faktörü sırasıyla, 400 µV/K ve 0.1 µW/mK2 olarak manyetik alanla sentezlenen (PTh/PEDOT3)m’den elde edildi.

Thermoelectric Properties of ex-situ PTH/PEDOT Composites

A thermoelectric material can convert temperature difference into electrical potential difference. Today, intensive researches are being carried out in order to use flexible, non-toxic and inexpensive conductive polymers instead of hard, hard-to-shape, expensive and toxic semiconductor metals used as thermoelectric materials. Among the conductive polymers investigated for this purpose, poly(3,4-ethylenedioxythiophene) (PEDOT) is the most promising. However, its thermoelectric properties alone are not sufficient. Thermoelectric properties can be increased by incorporating nanoparticles in inorganic, organic or polymeric structures into conductive polymers. In this study firstly, PTh was synthesized with and without magnetic field by oxidative polymerization in aqueous media in the presence of poly(sulfonic acid diphenyl aniline). Secondly, PEDOT was synthesized with and without magnetic field in aqueous media by oxidative polymerization. Then, ex-situ PTH/PEDOT composites were obtained with different ratios of PTh/PEDOT. Particle sizes of polymers were measured and their FTIR and UV-vis. spectra were taken. Seebeck coefficient and electrical conductivity were measured from thin films of polymers. Power factor values were calculated. It was found that the Seebeck coefficients of PTh and ex-situ PTH/PEDOT composites increased with magnetic field. The highest Seebeck coefficient and power factor of PEDOTs were obtained from PEDOT synthesized without magnetic field as 1683.3 µV/K and 98.2 µW/mK2, respectively. The highest Seebeck coefficient and power factor of ex-situ PTh/PEDOT composites were obtained from (PTh/PEDOT3)m synthesized with magnetic field as 400 µV/K and 0.1 µW/mK2, respectively.

___

  • Ahmed, N. & F. Karaman, 2018. Poly (3, 4-ethylene dioxythiophene)/copper sulfide hybrid thermoelectric materials with large Seebeck coefficient around room temperature. Journal of Optoelectronics and Advanced Materials, 20, 695-700.
  • Aswal, D. K., D. K. Aswal & J. Yakhmi., 2010. Molecular and organic electronics devices. Nova Science Publishers, 424.
  • Aswal, D. K., R. Basu & A. Singh, 2016. Key issues in development of thermoelectric power generators: High figure-of-merit materials and their highly conducting interfaces with metallic interconnects. Energy conversion and management, 114, 50-67.
  • Atik, K. & R. Kayabaşı, 2009. Jeotermal Enerji Kullanılarak Termoelektrik Jeneratör İle Elektrik Enerjisi Üretimi. Makine Teknolojileri Elektronik Dergisi, 6, 59-64.
  • Aydemir, K., S. Tarkuc, A. Durmus, G. E. Gunbas & L. Toppare, 2008. Synthesis, characterization and electrochromic properties of a near infrared active conducting polymer of 1, 4-di (selenophen-2-yl)-benzene. Polymer, 49, 2029-2032.
  • Bahk, J.-H., H. Fang, K. Yazawa & A. Shakouri, 2015, Flexible thermoelectric materials and device optimization for wearable energy harvesting. Journal of Materials Chemistry C, 3, 10362-10374.
  • Bharti, M., A. Singh, S. Samanta & D. Aswal, 2018. Conductive polymers: Creating their niche in thermoelectric domain. Prog. Mater. Sci, 93, 270-310.
  • Chen, Y., Y. Zhao & Z. Liang, 2015. Solution processed organic thermoelectrics: towards flexible thermoelectric modules. Energy & Environmental Science, 8, 401-422.
  • Crispin, D. X., 2012. Retracted article: towards polymer-based organic thermoelectric generators. Energy & Environmental Science, 5, 9345-9362.
  • Dresselhaus, M. S., G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J. P. Fleurial & P. Gogna, 2007. New directions for low‐dimensional thermoelectric materials. Advanced materials, 19, 1043-1053.
  • Du, Y., S. Z. Shen, K. Cai & P. S. Casey, 2012. Research progress on polymer–inorganic thermoelectric nanocomposite materials. Progress in Polymer Science, 37, 820-841.
  • Dubey, N. & M. Leclerc, 2011. Conducting polymers: efficient thermoelectric materials. Journal of Polymer Science Part B: Polymer Physics, 49, 467-475.
  • Han, C., Z. Li & S. Dou, 2014. Recent progress in thermoelectric materials. Chinese science bulletin, 59, 2073-2091.
  • Hiraishi, K., A. Masuhara, H. Nakanishi, H. Oikawa & Y. Shinohara, 2009. Evaluation of thermoelectric properties of polythiophene films synthesized by electrolytic polymerization. Japanese Journal of Applied Physics, 48, 071501.
  • Huner, K. & F. Karaman, 2018. The effect of external magnetic field on the thermoelectric properties of polythiophene. Materials Research Express, 6, 015302.
  • Hüner, K., K. Ulutaş, H. Deligöz, L. Sartinska & T. Eren, 2018. ROMP‐based boron nitride composites. Journal of Applied Polymer Science, 135, 45658.
  • Jeon, S. S., S. J. Yang, K.-J. Lee & S. S. Im, 2010. A facile and rapid synthesis of unsubstituted polythiophene with high electrical conductivity using binary organic solvents. Polymer, 51, 4069-4076.
  • Kim, B., G. Spinks, C. Too, G. Wallace & Y. Bae, 2000. Preparation and characterisation of processable conducting polymer–hydrogel composites. Reactive and Functional Polymers, 44, 31-40.
  • Kimura, T., 2003. Study on the effect of magnetic fields on polymeric materials and its application. Polymer Journal, 35, 823-843.
  • Kroon, R., D. A. Mengistie, D. Kiefer, J. Hynynen, J. D. Ryan, L. Yu & C. Müller, 2016. Thermoelectric plastics: from design to synthesis, processing and structure–property relationships. Chemical Society Reviews, 45, 6147-6164.
  • Kuchibhatla, S. V., A. Karakoti, D. Bera & S. Seal, 2007. One dimensional nanostructured materials. Progress in materials science, 52, 699-913.
  • Lee, S. H., Y. S. Kim & J. H. Kim, 2014. Synthesis of polythiophene/poly(3, 4 ethylenedioxythiophene) nanocomposites and their application in thermoelectric devices. Journal of electronic materials, 43, 3276-3282.
  • Lee, S. J., J. J. Oh, J. M. Lee & J. H. Kim, 2009 Characterization and Film Forming Application of Polythiophene Nanoparticles Synthesized by Fe3+-Catalyzed Oxidative Polymerization in Aqueous Medium. Journal of nanoscience and nanotechnology, 9, 7236-7239.
  • Liu, C., J. Xu, B. Lu, R. Yue & F. Kong, 2012. Simultaneous increases in electrical conductivity and Seebeck coefficient of PEDOT: PSS films by adding ionic liquids into a polymer solution. Journal of electronic materials, 41, 639-645.
  • Majid, K., R. Tabassum, A. Shah, S. Ahmad & M. Singla, 2009. Comparative study of synthesis, characterization and electric properties of polypyrrole and polythiophene composites with tellurium oxide. Journal of Materials Science: Materials in Electronics, 20, 958-966.
  • Nardes, A. M., R. A. Janssen & M. Kemerink, 2008. A morphological model for the solvent‐enhanced conductivity of PEDOT: PSS thin films. Advanced Functional Materials, 18, 865-871.
  • Nardes, A. M. & M. Kemerink, 2008. MM dekok, E. Vinken, K. Maturova, and RAJ Janssen. Org. Electron, 9, 727.
  • Pichanusakorn, P. & P. Bandaru, 2010. Nanostructured thermoelectrics. Materials Science and Engineering: R: Reports, 67, 19-63.
  • Ram, M. K., O. Yavuz & M. Aldissi, 2005. NO2 gas sensing based on ordered ultrathin films of conducting polymer and its nanocomposite. Synthetic Metals, 151, 77-84.
  • Rider, D. A., B. J. Worfolk, K. D. Harris, A. Lalany, K. Shahbazi, M. D. Fleischauer, M. J. Brett & J. M. Buriak, 2010. Stable inverted polymer/fullerene solar cells using a cationic polythiophene modified PEDOT: PSS cathodic interface. Advanced Functional Materials, 20, 2404-2415.
  • Russ, B., A. Glaudell, J. J. Urban, M. L. Chabinyc & R. A. Segalman, 2016. Organic thermoelectric materials for energy harvesting and temperature control. Nature Reviews Materials, 1, 1-14.
  • Shi, H., C. Liu, J. Xu, H. Song, B. Lu, F. Jiang, W. Zhou, G. Zhang & Q. Jiang, 2013. Facile fabrication of PEDOT: PSS/polythiophenes bilayered nanofilms on pure organic electrodes and their thermoelectric performance. ACS applied materials & interfaces, 5, 12811-12819.
  • Steiner, U. E., & Ulrich, T., 1989. Magnetic field effects in chemical kinetics and related phenomena. Chemical Reviews, 89, 51-147.
  • Tsai, T.-C., H.-C. Chang, C.-H. Chen & W.-T. Whang, 2011. Widely variable Seebeck coefficient and enhanced thermoelectric power of PEDOT: PSS films by blending thermal decomposable ammonium formate. Organic Electronics, 12, 2159-2164.
  • Turro, N. J., 1983. Influence of nuclear spin on chemical reactions: magnetic isotope and magnetic field effects (a review). Proceedings of the National Academy of Sciences, 80, 609-621.
  • Wang, Y., J. Zhou & R. Yang, 2011. Thermoelectric properties of molecular nanowires. The Journal of Physical Chemistry C, 115, 24418-24428.
  • Wei, Q., M. Mukaida, K. Kirihara, Y. Naitoh & T. Ishida, 2015. Recent progress on PEDOT-based thermoelectric materials. Materials, 8, 732-750.
  • Worfolk, B. J., T. C. Hauger, K. D. Harris, D. A. Rider, J. A. Fordyce, S. Beaupré, M. Leclerc & J. M. Buriak, 2012.
  • Work Function Control of Interfacial Buffer Layers for Efficient and Air‐Stable Inverted Low‐Bandgap Organic Photovoltaics. Advanced Energy Materials, 2, 361-368.
  • Xia, Y. & J. Ouyang, 2012. Significant different conductivities of the two grades of poly (3, 4- ethylenedioxythiophene): poly (styrenesulfonate), Clevios P and Clevios PH1000, arising from different molecular weights. ACS applied materials & interfaces, 4, 4131-4140.
  • Yang, B., H. Ahuja & T. N. Tran, 2008. Thermoelectric technology assessment: application to air conditioning and refrigeration. HVAc&R Research, 14, 635-653.
  • Yildiz, E., P. Camurlu, C. Tanyeli, I. Akhmedov & L. Toppare, 2008. A soluble conducting polymer of 4-(2, 5-di (thiophen-2-yl)-1H-pyrrol-1-yl) benzenamine and its multichromic copolymer with EDOT. Journal of Electroanalytical Chemistry, 612, 247-256.
  • Yue, R. & J. Xu, 2012. Poly (3, 4-ethylenedioxythiophene) as promising organic thermoelectric materials: A mini-review. Synthetic metals, 162, 912-917.