Etki Enbüyükleme Problemi için Ajan-bazlı Modelleme Yaklaşımı
Pazara yeni girecek bir ürünün öncelikliolarak kullanımına sunulacağı kişilerin (hedef kümenin)belirlenmesi pazar payı tahmini yapmak için önemli, ancak çözülmesi zor bir problemdir. Bu makalede,bu problem için ajan-bazlı modelleme ile bir simülasyonçalışması geliştirilmiştir. Hedef kümeye seçilmişkişilerin sosyal ağ üzerindeki önemi, ikna becerileri, diğerlerinin yeni ürün adaptasyonugibi karakteristiközelliklerinve hedef küme büyüklüğününürünün yayılması üzerindeki etkileri incelenmektedir.Buözelliklerebağlı 12 farklı senaryoiçinçözümler değerlendirilmiştir.
An Agent-basedModelingApproachfortheInfluenceMaximization Problem
Identifyingfirstusers(target set) of a newproductentering a market is critical in forecastingthe market share, butalso it is ahard-to-solve problem.Inthispaper, wedevelop an agent-basedmodelingapproachas a simulationmethod. Westudycharacteristicfeatures of thetarget set, such as theirimportanceoverthesocial network andpersuasionskills, togetherwiththe size of the set andthenewproductadoption of the rest of the network,tounderstandtheireffects on product spread. Weevaluatesolutions of12 scenarioswithnumericalexperimentsbased on thesecharacteristics.
___
- Bourne, F.S. 1957. Groupinfluence in marketing
andpublicrelations.
Some
Applications
of
BehavioralResearch, Basil, Switzerland: UNESCO 207–
225.
- Guille, A., Hacid, H., Favre, C., Zighed, D. A., 2013.
Information diffusion in online socialnetworks: A
survey. ACM SigmodRecord, 42(2), 17-28.
- Rabade, R., Mishra, N., Sharma, S., 2014. Survey of
influentialuseridentificationtechniques in online
socialnetworks.
RecentAdvances
in
IntelligentInformatics, Springer, Cham, 359-370.
- Jurvetson, S., 2000. Whatexactly is viral marketing.
RedHerring, 78, 110-112.
- Van den Bulte, C.andJoshi, Y.V., 2007.
productdiffusionwithinfluentialsandimitators.
Marketing Science, 26 (3), 400-421. New
- Van den Bulte, C.andStremersch, S.,
Socialcontagionandincomeheterogeneity
newproductdiffusion:
A
meta-analytic
Marketing Science. 23(4), 530-544. 2004.
in
test.
- Phelps, J.E., Lewis, R., Mobilio, L.andPerry, D., 2005. Viral
marketing
orelectronicword-of-mouthadvertising:
Examiningconsumerresponsesandmotivationstopass
alongemail. Journal of AdvertisingResearch,44(4),
333-348.
- Richardson, M.andDomingos, P., 2001. Miningthe
network value of customers.Proceedings of
theSeventh ACM SIGKDD International Conference on
Knowledge DiscoveryandData Mining, ACM,57-66.
- Kempe, D., Kleinberg, J. andTardos, E., 2003.
Maximizingthe spread of influencethrough a social
network. Proceedings of theninth ACM SIGKDD
internationalconference
on
Knowledge
DiscoveryandData Mining,ACM, 137-146.
- Güney, E., 2017. On the optimal solution of
budgetedinfluencemaximization problem in
socialnetworks. OperationalResearch,
https://doi.org/10.1007/s12351-017-0305-x
- Wu, H. H., Küçükyavuz, S., 2017. A two-
stagestochasticprogrammingapproachforinfluencem
aximization
in
socialnetworks. ComputationalOptimizationand
Applications, 1-33.
- Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C.,
VanBriesen, J. andGlance, N., 2007. Cost-
effectiveoutbreakdetection in networks.Proceedings
of the 13th ACM SIGKDD International conference on
Knowledge DiscoveryandData Mining,ACM, 420-429.
- Chen,
W.,
Wang,
Y.
andYang,
S.,
2009.
Efficientinfluencemaximization
in
socialnetworks.Proceedings of the 15th ACM SIGKDD
International
conference
on
Knowledge
DiscoveryandData Mining,ACM, 199-208.
- Ohsaka, N.,Akiba, T., Yoshida, Y.andKawarabayashi, K.,
2014. Fastandaccurateinfluencemaximization on
largenetworkswithpruned
monte-
carlosimulations.Proceedings of theTwenty-Eighth
AAAI Conference on ArtificialIntelligence, 138-144.
AAAI Press.
- Tang, Y.,Shi, Y.,andXiao, X., 2015. Influencemaximization
in
near-lineartime:
A
martingaleapproach.
Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, SIGMOD15,
1539-1554, New York, NY, USA, ACM.
- Kempe, D., Kleinberg, J., andTardos, E., 2015.
Maximizingthe spread of influencethrough a social
network. Theory of Computing, 11(4):105-147.
- Galhotra, S., Arora, A., andRoy, S., 2016.
Holisticinfluencemaximization:
Combiningscalabilityandefficiencywithopinion-
awaremodels.Proceedings of the 2016 International
Conference on Management of Data, SIGMOD16,
743-758, New York, NY, USA, 2016. ACM.
- Garcia, R., 2005. Uses of agent-basedmodeling
ininnovation/newproductdevelopmentresearch.
Journal of Product Innovation Management, 22(5),
380-398.
- Goldenberg, J., Libai, B. ve Muller, E., 2001. Talk of the
network:
A
complexsystemslook
at
theunderlyingprocess of word-of-mouth.Marketing
Letters, 12 (3), 211-223.
- Beheshti, R., Jalalpour, M.,Glass, T. A., 2017.
Comparingmethods of targetingobesityinterventions
in populations: An agent-basedsimulation. SSM-
populationhealth, 3, 211-218.
- Wilensky, U., (1999). NetLogo.
http://ccl.northwestern.edu/netlogo/ . Center
forConnected Learning andComputer-
BasedModeling, Northwestern University, Evanston,
IL.
- Watts, D. J. andStrogatz, S.H., 1998. Collective Dynamics
of Small-world Networks. Nature, 393 (6684), 440-
442.
- Rogers, E.M., 1962.Diffusion of innovations. FreePress of
Glencoe, New York, NY, USA.