Etki Enbüyükleme Problemi için Ajan-bazlı Modelleme Yaklaşımı

Pazara yeni girecek bir ürünün öncelikliolarak kullanımına sunulacağı kişilerin (hedef kümenin)belirlenmesi pazar payı tahmini yapmak için önemli, ancak çözülmesi zor bir problemdir. Bu makalede,bu problem için ajan-bazlı modelleme ile bir simülasyonçalışması geliştirilmiştir. Hedef kümeye seçilmişkişilerin sosyal ağ üzerindeki önemi, ikna becerileri, diğerlerinin yeni ürün adaptasyonugibi karakteristiközelliklerinve hedef küme büyüklüğününürünün yayılması üzerindeki etkileri incelenmektedir.Buözelliklerebağlı 12 farklı senaryoiçinçözümler değerlendirilmiştir.

An Agent-basedModelingApproachfortheInfluenceMaximization Problem

Identifyingfirstusers(target set) of a newproductentering a market is critical in forecastingthe market share, butalso it is ahard-to-solve problem.Inthispaper, wedevelop an agent-basedmodelingapproachas a simulationmethod. Westudycharacteristicfeatures of thetarget set, such as theirimportanceoverthesocial network andpersuasionskills, togetherwiththe size of the set andthenewproductadoption of the rest of the network,tounderstandtheireffects on product spread. Weevaluatesolutions of12 scenarioswithnumericalexperimentsbased on thesecharacteristics.

___

  • Bourne, F.S. 1957. Groupinfluence in marketing andpublicrelations. Some Applications of BehavioralResearch, Basil, Switzerland: UNESCO 207– 225.
  • Guille, A., Hacid, H., Favre, C., Zighed, D. A., 2013. Information diffusion in online socialnetworks: A survey. ACM SigmodRecord, 42(2), 17-28.
  • Rabade, R., Mishra, N., Sharma, S., 2014. Survey of influentialuseridentificationtechniques in online socialnetworks. RecentAdvances in IntelligentInformatics, Springer, Cham, 359-370.
  • Jurvetson, S., 2000. Whatexactly is viral marketing. RedHerring, 78, 110-112.
  • Van den Bulte, C.andJoshi, Y.V., 2007. productdiffusionwithinfluentialsandimitators. Marketing Science, 26 (3), 400-421. New
  • Van den Bulte, C.andStremersch, S., Socialcontagionandincomeheterogeneity newproductdiffusion: A meta-analytic Marketing Science. 23(4), 530-544. 2004. in test.
  • Phelps, J.E., Lewis, R., Mobilio, L.andPerry, D., 2005. Viral marketing orelectronicword-of-mouthadvertising: Examiningconsumerresponsesandmotivationstopass alongemail. Journal of AdvertisingResearch,44(4), 333-348.
  • Richardson, M.andDomingos, P., 2001. Miningthe network value of customers.Proceedings of theSeventh ACM SIGKDD International Conference on Knowledge DiscoveryandData Mining, ACM,57-66.
  • Kempe, D., Kleinberg, J. andTardos, E., 2003. Maximizingthe spread of influencethrough a social network. Proceedings of theninth ACM SIGKDD internationalconference on Knowledge DiscoveryandData Mining,ACM, 137-146.
  • Güney, E., 2017. On the optimal solution of budgetedinfluencemaximization problem in socialnetworks. OperationalResearch, https://doi.org/10.1007/s12351-017-0305-x
  • Wu, H. H., Küçükyavuz, S., 2017. A two- stagestochasticprogrammingapproachforinfluencem aximization in socialnetworks. ComputationalOptimizationand Applications, 1-33.
  • Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J. andGlance, N., 2007. Cost- effectiveoutbreakdetection in networks.Proceedings of the 13th ACM SIGKDD International conference on Knowledge DiscoveryandData Mining,ACM, 420-429.
  • Chen, W., Wang, Y. andYang, S., 2009. Efficientinfluencemaximization in socialnetworks.Proceedings of the 15th ACM SIGKDD International conference on Knowledge DiscoveryandData Mining,ACM, 199-208.
  • Ohsaka, N.,Akiba, T., Yoshida, Y.andKawarabayashi, K., 2014. Fastandaccurateinfluencemaximization on largenetworkswithpruned monte- carlosimulations.Proceedings of theTwenty-Eighth AAAI Conference on ArtificialIntelligence, 138-144. AAAI Press.
  • Tang, Y.,Shi, Y.,andXiao, X., 2015. Influencemaximization in near-lineartime: A martingaleapproach. Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, SIGMOD15, 1539-1554, New York, NY, USA, ACM.
  • Kempe, D., Kleinberg, J., andTardos, E., 2015. Maximizingthe spread of influencethrough a social network. Theory of Computing, 11(4):105-147.
  • Galhotra, S., Arora, A., andRoy, S., 2016. Holisticinfluencemaximization: Combiningscalabilityandefficiencywithopinion- awaremodels.Proceedings of the 2016 International Conference on Management of Data, SIGMOD16, 743-758, New York, NY, USA, 2016. ACM.
  • Garcia, R., 2005. Uses of agent-basedmodeling ininnovation/newproductdevelopmentresearch. Journal of Product Innovation Management, 22(5), 380-398.
  • Goldenberg, J., Libai, B. ve Muller, E., 2001. Talk of the network: A complexsystemslook at theunderlyingprocess of word-of-mouth.Marketing Letters, 12 (3), 211-223.
  • Beheshti, R., Jalalpour, M.,Glass, T. A., 2017. Comparingmethods of targetingobesityinterventions in populations: An agent-basedsimulation. SSM- populationhealth, 3, 211-218.
  • Wilensky, U., (1999). NetLogo. http://ccl.northwestern.edu/netlogo/ . Center forConnected Learning andComputer- BasedModeling, Northwestern University, Evanston, IL.
  • Watts, D. J. andStrogatz, S.H., 1998. Collective Dynamics of Small-world Networks. Nature, 393 (6684), 440- 442.
  • Rogers, E.M., 1962.Diffusion of innovations. FreePress of Glencoe, New York, NY, USA.