Dönen Kare Çubuklu İki Boyutlu Fononik Kristalin Dispersiyon Özellikleri

Bu çalışmada, bir kare örgülü hava matrisinde yer alan kare şekilli saçılardan oluşan iki boyutlu fononikkristallerin bant yapısı çalışıldı. Bant yapısı hesaplamaları için, bir hava matrisindeki kare LiNbO3çubuklarından oluşan iki boyutlu bir fononik kristal dikkate alındı. Kare çubukların yönelimlerinin akustikbant aralıkları üzerindeki etkisi, iletim kaybı spektrumları, basınç alanı haritası ve dağılım ilişkileri sonluelemanlar yöntemi ve Bloch teoremi kullanılarak hesaplandı. Bu yapı için maksimum bant aralığı 45°dönme açısında bulundu. Sayısal sonuçlar, bant aralıklarının kare çubukların dönüş açısını değiştirerekayarlanabileceğini göstermektedir.

Dispersion Features of Two-dimensional Phononic Crystal with Rotating Square Rods

In the present work, band structures of two-dimensional phononic crystals (PC) composed of squareshaped scaters in an air matrix with a square lattice are investigated. A two-dimensional phononiccrystal consisting of square LiNbO3 rods in an air matrix is considered for band structure calculations. Effects of orientations of square rods on the acoustic band gaps, transmission loss spectra, pressure field map and dispersion relations are calculated using the finite element method and Bloch theorem. The maximum acoustic band gaps for this structure is found at the rotation angle of 45°. The numerical results show that the band gaps can be tuned by changing the rotation angle of the square rods

___

  • Ang, L.Y.L., Koh, Y. K. and Lee, H.,2016. A potential for cabin noise control in automobiles and armored vehicles. International Journal of Applied Mechanics , 8(5), 1650072.
  • Chen, A.L., Wang, Y.S., Guo, Y.F. and Wang, Z.D., 2008. Band structures of Fibonacci phononic quasicrystals. Solid State Communications, 145, 103-108.
  • El-Naggar, S.A., Mostafa, S.I. and Rafat, N.H., 2011. Complete band gaps of phononic crystal plates with square rods. Ultrasonics, 52(4), 536-542.
  • Haberman, M.R. and Guild, M.D., 2016. Acoustic Metamaterials. Physics Today, 69(6), 42–48.
  • Haberman, M.R. and Norris, A.N., 2016. Acoustic Metamaterials. Acoustics Today, 12(3), 31–41.
  • Hsu, J.C. and Wu, T.T., 2017. Lamb waves in binary locally resonant phononic plates with two dimensional lattices. Applied Physics Letters, 90, 201904.
  • Kafesaki, M. and Economou, E.N., 1999. Multiplescattering theory for three-dimensional periodic acoustic composites. Physical Review B, 60, 11993- 12001.
  • Khelif, A., Choujaa, A., Benchabane, S., Djafari-Rouhani, B. and Laude, V., 2004. Guiding and bending of acoustic waves in highly confined phononic crystal waveguides. Applied Physics Letters, 84(22), 4400- 4402.
  • Kuo, N-K. and Piazza, G., 2011. Fractal phononic crystals in aluminum nitride: An approach to ultra high frequency bandgaps. Applied Physics Letters, 99, 163501.
  • Kushwaha, M.S. and Halevi, P., 1994. Band-gap engineering in periodic elastic composites. Applied Physics Letters, 64(9), 1085–1087.
  • Kushwaha, M.S., Halevi, P., Dobrzynski, L. and DjafariRouhani, B., 1993. Acoustic band structure of periodic elastic composites. Physical Review Letters, 71(13), 2022–2025.
  • Kushwaha, M.S., 2016. The Phononic Crystals: An unending quest for tailoring acoustics. Modern Physics Letters B, 30(19), 1630004.
  • Li, F-L., Wang, Y-S., Zhang, C., 2011. Bandgap calculation of two-dimensional mixed solid–fluid phononic crystals by Dirichlet-to-Neumann maps. Physica Scripta, 84(5), 055402.
  • Li, J., Wang, Y. and Zhang, C., 2008. Finite element method for analysis of band structures of three dimensonal phononic crystals. 2008 IEEE International Ultrasonics Symposium Proceedings, 1- 4, 1468-1471.
  • Li, X., Wu, F., Hu, H., Zhong, S. and Liu, Y., 2002. Large acoustic band gaps created by rotating square rods in two-dimensional periodic composites. Journal of Physics D: Applied Physics, 36(1), L15-L17.
  • Lin, Sz-C.S. and Huang T.J., 2011. Tunable phononic crystals with anisotropic inclusions. Physical Review B, 83, 174303.
  • Liu, Z., Zhang, X., Mao, Y., Zhu, Y.Y., Yang, Z., Chan, C.T. and Sheng, P., 2000. Locally resonant sonic materials. Science, 289(5485), 1734-1736.
  • Lu, M.H., Feng, L. and Chen, Y.F., 2009. Phononic crystals and acoustic metamaterials. Materials Today, 12(12), 34-42.
  • Júnior, E.J.P. de M. and Santos, J.M.C.D., 2017. Band Structure in Carbon Nanostructure Phononic Crystals. Materials Research, 20(2), 555-571.
  • Meseguer, F., Holgado, M., Caballero, D., Benaches, N., Sánchez-Dehesa, J., López, C. And Llinares, J., 1999. Rayleigh-wave attenuation by a semi-infinite twodimensional elastic-band-gap crystal. Physical Review B, 59, 12169–12172.
  • Miranda Jr., E.J.P. de and Santos, J.M.C.D., 2017. Complete Band Gap in Nano-Piezoelectric Phononic Crystals. Materials Research, 20, supl.1, 15-38.
  • Montero de Espinosa, F.R., Jiménez, E. and Torres, M., 1998. Ultrasonic band gap in a periodic twodimensional composite. Physical Review Letters, 80, 1208-1211.
  • Nicola, F.De., Purayil, N.S.P., Spirito, D., Miscuglio, M., Tantussi, F., Tomadin A., Angelis, F.De., Polini, M., Krahne, R. and Pellegrini, V., 2018. Multiband Plasmonic Sierpinski Carpet Fractal Antennas. ACS Photonics, 5(6), 2418-2425.
  • Norris, R.C., Hamel, J.S. and Nadeau P., 2008. Phononic band gap crystals with periodic fractal inclusions: Theoretical study using numerical analysis. Journal of Applied Physics, 103, 104908.
  • Pennec, Y., Rouhani, B.D., El Boudouti, E., Li, C., El Hassouani, Y., Vasseur et al, J.O., 2011. Band gaps and waveguiding in phoxonic silicon crystal slabs. Chinese Journal of Physics, 49, 100–110.
  • Pennec, Y., Vasseur, J.O., Djafari-Rouhani, B., Dobrzyński, L. and Deymier, P.A., 2010. Two-dimensional phononic crystals: Examples and applications. Surface Science Reports, 65, 229-291.
  • Sainidou, R., Stefanou, N. and Modinos, A., 2002. Formation of absolute frequency gaps in threedimensional solid phononic crystals. Physical Review B, 66(21), 2012301.
  • Sigalas, M.M. and Economou, E.N., 1992. Elastic and acoustic-wave band-structure. Journal of Sound and Vibration, 158(2), 377–382.
  • Song, A., Wang, X., Chen, T. and Wan L., 2017. Band structures in a two-dimensional phononic crystal with rotational multiple scatterers. International Journal of Modern Physics, 31 (06), 1750038.
  • Tanaka, Y., Tomoyasu, Y. and Tamura, S., 2000. Band structure of acoustic waves in phononic lattices: Twodimensional composites with large acoustic mismatch. Journal of Sound and Vibration, 62, 7387- 7392.
  • Vasseur, J. O., Deymier, P.A., Frantziskonis, G., Hong, G., D-Rouhani, B. and Dobrzynski, L., 1998. Experimental evidence for the existence of absolute acoustic band gaps in two-dimensional periodic composite media. Journal of Physics: Condensed Matter, 10, 6051–6064.
  • Wang, J., Xu ,X., Liu ,X. and Xu ,G., 2009. A tunable acoustic filter made by periodical structured materials. Applied Physics Letters, 94(18), 181908.
  • Wang, X.H., Gu, B. Y., Li, Z.Y. and Yang, G.Z., 1999. Large absolute photonic band gaps created by rotating noncircular rods in two-dimensional lattices. Physical Review B, 60(16), 11417-11411.
  • Wang, Y.Z., Li, F.M., Huang, W.H. and Wang, Y.S., 2007. Effects of inclusion shapes on the band gaps in twodimensional piezoelectric phononic crystals. Journal of Physics: Condensed Matter, 19, 496204.
  • Wilm, M., Khelif, A., Laude, V. and Ballandras, S., 2007. Design guidelines of 1-3 piezoelectric composites dedicated to ultrasound imaging transducers, based on frequency band-gap considerations. The Journal of the Acoustical Society of America, 122(2), 786-793.
  • Wu, T.T., Wu, L.C. and Huang, Z.G., 2005. Frequency band-gap measurement of two-dimensional air/silicon phononic crystals using layered slanted finger interdigital transducers. Journal of Applied Physics, 97(9), 94916.
  • Yu, D., Wen, J., Zhao, H., Liu, Y. and Wen, X., 2008. Vibration reduction by using the idea of phononic crystals in a pipe-conveying fluid. Journal of Sound and Vibration, 318(1-2), 193-205.
  • Zou, K., Wang, Y-feng and Wang, Y-sheng., 2013. The effects of the rod rotation on the band gaps of a twodimensional piezoelectric phononic crystal. Proceedings of the 2013 Symposium on Piezoelectricity, Acoustic Waves and Device Applications, SPAWDA 2013.
  • 1-http://www.comsol.com. COMSOL AB, Stockholm, Sweden. COMSOL Multiphysics® v. 5.2.
Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 2015
  • Yayıncı: AFYON KOCATEPE ÜNİVERSİTESİ