Çimento Hamurlarının Mekanik Özelliklerine CO2 Kürünün Etkisi

Erken yaşta CO2 kürü, çimento hidratasyon ürünlerinin oluşumunu etkileyerek çimento bağlayıcılı malzemelerin mekanik özeliklerini değiştirebilmektedir. Farklı su/çimento (s/ç) oranlarında (%28 ve %32) çimento hamurları hazırlandıktan sonra 4 farklı şekilde CO2 kürü uygulanmıştır. Çimento hamurlarının karıştırma işlemi bittikten 15 dk sonra numunelere 15, 30 ve 60 dk CO2 kürü (1, 3, 5, 8 ve 10 bar) uygulanmıştır. Aynı zamanda numunelerin bir kısmına da priz başladıktan sonra (117 dk) 30 dk CO2 kürü (1, 3, 5, 8, 10 ve 50 bar) uygulanmıştır. Çimento hamurlarının 7 günlük basınç dayanımları incelenmiştir. En yüksek basınç dayanımı (112.73 MPa) 15 dk ön bekleme yapılmış ve 60 dk süresince 3 bar CO2 kürü uygulanmış KK %28 kodlu numunede elde edilmiştir. Kontrol numunelerinde s/ç oranı arttığında basınç dayanımındaki azalma %27 iken, 15 dk ön beklemeden sonra 60 dk CO2 kürü uygulanan numunelerdeki bu azalma oranı %53’dür. Dayanım artışı açısından genel olarak çimento hamuruna uygulanan en uygun kür işlemi 15 dk ön bekleme sonunda 60 dk 3 bar CO2 kürüdür.Erken yaşta CO2 kürü, çimento hidratasyon ürünlerinin oluşumunu etkileyerek çimento bağlayıcılı malzemelerin mekanik özeliklerini değiştirebilmektedir. Farklı su/çimento (s/ç) oranlarında (%28 ve %32) çimento hamurları hazırlandıktan sonra 4 farklı şekilde CO2 kürü uygulanmıştır. Çimento hamurlarının karıştırma işlemi bittikten 15 dk sonra numunelere 15, 30 ve 60 dk CO2 kürü (1, 3, 5, 8 ve 10 bar) uygulanmıştır. Aynı zamanda numunelerin bir kısmına da priz başladıktan sonra (117 dk) 30 dk CO2 kürü (1, 3, 5, 8, 10 ve 50 bar) uygulanmıştır. Çimento hamurlarının 7 günlük basınç dayanımları incelenmiştir. En yüksek basınç dayanımı (112.73 MPa) 15 dk ön bekleme yapılmış ve 60 dk süresince 3 bar CO2 kürü uygulanmış KK %28 kodlu numunede elde edilmiştir. Kontrol numunelerinde s/ç oranı arttığında basınç dayanımındaki azalma %27 iken, 15 dk ön beklemeden sonra 60 dk CO2 kürü uygulanan numunelerdeki bu azalma oranı %53’dür. Dayanım artışı açısından genel olarak çimento hamuruna uygulanan en uygun kür işlemi 15 dk ön bekleme sonunda 60 dk 3 bar CO2 kürüdür.

Effect of CO2 Curing on Mechanical Properties of Cement PastesEffect of CO2 Curing on Mechanical Properties of Cement Pastes

CO2 curing at an early age can change the mechanical properties of cement-binding materials by affecting the formation of cement hydration products. After the cement pastes were prepared at different water/cement (w/c) ratios (28% and 32%), CO2 curing was applied in 4 different ways. 15 minutes after the mixing process of the cement pastes was completed, CO2 curing (1, 3, 5, 8 and 10 bar) was applied to the samples for 15, 30 and 60 minutes. At the same time, 30 minutes of CO2 curing (1, 3, 5, 8, 10 and 50 bar) was applied to some of the samples after setting (117 minutes). The 7-day compressive strengths of cement pastes were investigated. The highest compressive strength (112.73 MPa) was obtained in the KK 28% coded sample, which was kept for 15 minutes and then cured with 3 bar CO2 for 60 minutes. While the decrease in compressive strength was 27% when the w/c ratio in the control samples increased, this decrease rate was 53% in the samples cured with CO2 for 60 minutes after 15 minutes of pre-waiting. In terms of strength increase, the most suitable curing process applied to cement paste, in general, was 3 bar CO2 curing for 60 minutes after 15 minutes of pre-waiting.

___

  • Chen, T., Gao, X., 2020. Use of carbonation curing to improve mechanical strength and durability of pervious concrete. ACS Sustainable Chemistry and Engineering, 8(9), 3872–3884.
  • Damtoft, J.S., Lukasik, J., Herfort, D., Sorrentino, D., Gartner, E.M., 2008. Sustainable development and climate change initiatives. Cement and Concrete Research, 38(2), 115-127.
  • Goodbrake, C.J., Young, J.F., Berger, R.L., 1979. Reaction of hydraulic calcium silicates with carbon dioxide and water. Journal of the American Ceramic Society, 62(9-10), 488-491.
  • Guo, R., Wang, L., Huang, H., Wang, T., Yi, Z., 2022. Enhanced carbonation curing of cement pastes with dolomite additive. Greenhouse Gases: Science and Technology, 12(2), 273–283.
  • Gürbüz, C., Aracı, Ö.N.K., Bekci, İ., 2009. Dünya’da ve türkiye’de karbon ticareti ve karbon muhasebesi uygulamaları üzerine bir araştırma. Mehmet Akif Ersoy Üniversitesi Sosyal Bilimler Enstitüsü Dergisi 11(28), 424-438.
  • Han, S.H., Jun, Y., Kim, J.H., 2023. The use of monoethanolamine CO2 solvent for the CO2 curing of cement-based materials. Sustainable Materials and Technologies, 35, e00559.
  • Jiang, L., Wu, Q., Gu, Q., Zhong, D., Wang, L., 2023a. Utilization of CO2-cured waste cement powder to enhance the properties and microstructure of cement mortar and paste. Journal of Materials in Civil Engineering, 34(10), 04022253.
  • Jiang, L., Wu, Q., Huo, Z., Zhu, Z., Wu, F., Lu, B., 2023b. An approach to improve compressive strength of cement paste at low temperature by carbonation curing, Construction and Building Materials, 365, 130128.
  • Kang, S.H., Kwon, Y.H., Moon, J., 2019. Quantitative analysis of CO2 uptake and mechanical properties of air lime-based materials. Energies, 12(15), 2903.
  • Khan, M.T., Saud, K.R., Irfan, K.A.M., Ibrahim, S., 2018. Curing of concrete by carbon dioxide. International Research Journal of Engineering and Technology (IRJET), 5(4), 4410-4414.
  • Klemm, W.A., Berger, R.L., 1972. Accelerated curing of cementitious systems by carbon dioxide: Part I. Portland cement. Cement and Concrete Research, 2(5), 567-576.
  • Kumar, T.S., D, B.K.V.G., Reddy, S.T.N., Rao, G.S., 2019. Mechanical properties of concrete when cured with carbon dioxide. International Journal of Engineering and Advanced Technology, 8(6), 2544-2549.
  • Lu, B., Drissi, S., Liu, J., Hu, X., Song, B., Shi, C., 2022. Effect of temperature on CO2 curing, compressive strength and microstructure of cement paste. Cement and Concrete Research, 157, 106827. Monkman, S., MacDonald, M., 2017. On carbon dioxide utilization as a means to improve the sustainability of ready-mixed concrete. Journal of Cleaner Production, 167, 365-375.
  • Nair, P.A.K., Paine, K., Calabria-Holley, J., 2023. Control of carbonation mechanism in Portland cement paste using synthetic carbon-capture aluminosilicates. Journal of CO2 Utilization, 69, 102391.
  • Pacheco-Torgal, F., Abdollahnejad, Z., Camões, A.F., Jamshidi, M., Ding, Y., 2012. Durability of alkali-activated binders: A clear advantage over Portland cement or an unproven issue?. Construction and Building Materials, 30, 400-405.
  • Shi, C., Tu, Z., Guo, M.Z., Wang, D., 2017. Sustainable and Nonconventional Construction Materials using Inorganic Bonded Fiber Composites. Junior, H.S., Fiorelli, J., dos Santos, S.F. (Editor), Woodhead Publishing, 313-341.
  • Song, B., Hu, X., Liu, S., Shi, C., 2022b. Chloride binding of early CO2-cured Portland cement-fly ash-GGBS ternary pastes. Cement and Concrete Composites, 134, 104793.
  • Song, B., Liu, S., Hu, X., Ouyang, K., Li, G., Shi, C., 2022a. Compressive strength, water and chloride transport properties of early CO2-cured Portland cement-fly ash-slag ternary mortars. Cement and Concrete Composites, 134, 104786.
  • Song, B., Shi, C., Hu, X., Ouyang, K., Ding, Y., Ke, G., 2021. Effect of early CO2 curing on the chloride transport and binding behaviors of fly ash-blended Portland cement. Construction and Building Materials, 288, 123113. Tiong, M., Li, X., Mo, K.H., Ling, T.C., 2022. Effects of moulding pressure and w/c induced pore water saturation on the CO2 curing efficiency of dry-mix cement blocks. Construction and Building Materials, 335, 127509.
  • Tu, Z., Shi, C., Farzadnia, N., 2018. Effect of Limestone Powder Content on the Early-Age Properties of CO2-Cured Concrete. Journal of Materials in Civil Engineering, 30(8), 04018164.
  • Wang, Y., Mo, K.H., Du, H., Ling, T.C., 2022. Effects of CO2 curing treatment on alkali-silica reaction of mortars containing glass aggregate. Construction and Building Materials, 323, 126637.
  • Wei, J., Mo, K.H., Ling, T.C., 2023. Roles of subsequent curing on the pH evolution and further hydration for CO2 cured cement pastes. Journal of Building Engineering, 64, 105701.
  • Xu, J., Wang, H., Wang, W., Shi, F., 2023. The influence of CO2-cured incinerated waste fly ash on the performance of reactive powder concrete. Coatings, 13(4), 709.
  • Xuan, D., Zhan, B., Poon, C.S., 2018. A maturity approach to estimate compressive strength development of CO2-cured concrete blocks. Cement and Concrete Composites, 85, 153-160.
  • Zhan, B.J., Xuan, D.X., Poon, C.S., Shi, C.J., Kou, S.C., 2018. Characterization of C–S–H formed in coupled CO2–water cured Portland cement pastes. Materials and Structures, 51, 92.
  • Zhang, D., Shao, Y., 2018. Surface scaling of CO2-cured concrete exposed to freeze-thaw cycles. Journal of CO2 Utilization, 27, 137-144.
Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 2015
  • Yayıncı: AFYON KOCATEPE ÜNİVERSİTESİ