DC MOTORUN HIZ KONTROLÜ İÇİN KESİR DERECELİ PID KONTROLÖR TASARIMI VE DAYANIKLILIK ANALİZİ

Kesir dereceli PID kontrolör çoğu kontrol sisteminde geleneksel PID kontrolöre göre daha başarılı bir kontrol performansı sunar. Bu çalışmada, DC motorun hız kontrolü için kesir dereceli PID kontrolörün kullanıldığı optimizasyon-tabanlı bir metot önerilmiştir. Önerilen yöntem, optimal kesir dereceli PID kontrolör parametrelerini belirlemek amacıyla yusufçuk algoritması ve çok-ölçütlü bir amaç fonksiyonu kullanır. Kontrol sistemlerinde amaç fonksiyonu oluşturulurken hatayı esas alan ölçütler ya da zaman cevabı özelliklerini esas alan ölçütler kullanılır. Bu çalışmada hatayı esas alan integral performans ölçütleri ve zaman cevabı özelliklerinden yüzde aşma değeri birleştirilerek bir çok-ölçütlü amaç fonksiyonu tanımlanmıştır. Önerilen yöntemin performansını değerlendirmek amacıyla zaman cevabı analizi ve dayanıklılık analizi yapılmıştır. Her iki analizde de güncel literatürden çalışmalarla karşılaştırmalar yapılarak, yöntemin başarısı test edilmiştir. Elde edilen sonuçlar şekiller ve çizelgelerle sunulmuş, önerilen yöntemin DC motorun hız kontrolü için başarılı bir kontrol gerçekleştirdiği görülmüştür.

FRACTIONAL ORDER PID CONTROLLER DESIGN and ROBUSTNESS ANALYSIS for SPEED CONTROL of DC MOTOR

A fractional-order PID controller offers better control performance than a traditional PID controller in most control systems. In this study, an optimization-based method using a fractional-order PID controller is proposed for speed control of DC motor. The proposed method uses the dragonfly algorithm and a multi-criteria objective function to determine the optimal fractional-order PID controller parameters. In control systems, criteria based on error or based on time response specifications are used while creating the objective function. The study, a multi-criteria objective function is defined by combining the error-based integral performance index and the percent overshoot from the time response properties. Time response analysis and robustness analysis are performed to evaluate the performance of the proposed method. In both analyzes, the success of the method is tested by making comparisons with studies from the current literature. The obtained results are presented with figures and tables, and it is seen that the proposed method performs a successful control for the speed control of the DC motor.

___

  • Sabir M.M.,Khan J.A. Optimal design of PID controller for the speed control of DC motor by using metaheuristic techniques. Advances in artificial neural systems, vol. 2014, 2014
  • Ekinci S.,Izci D.,Hekimoğlu B. Optimal FOPID speed control of DC motor via opposition-based hybrid manta ray foraging optimization and simulated annealing algorithm. Arabian Journal for Science and Engineering, vol. 46, no. 2; 2021, pp. 1395-1409.
  • Agarwal J.,Parmar G.,Gupta R.,Sikander A. Analysis of grey wolf optimizer based fractional order PID controller in speed control of DC motor. Microsystem Technologies, vol. 24, no. 12; 2018, pp. 4997-5006.
  • Hekimoğlu B. Optimal tuning of fractional order PID controller for DC motor speed control via chaotic atom search optimization algorithm. IEEE Access, vol. 7, 2019, pp. 38100-38114.
  • Idir A.,Kidouche M.,Bensafia Y.,Khettab K.,Tadjer S.A. Speed control of DC motor using PID and FOPID controllers based on differential evolution and PSO. evolutionary computation, vol. 20, 2018, p. 21.
  • Jain R.V.,Aware M.,Junghare A. Tuning of fractional order PID controller using particle swarm optimization technique for DC motor speed control. in 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), 2016, pp. 1-4: IEEE.
  • Puangdownreong D. Fractional order PID controller design for DC motor speed control system via flower pollination algorithm. ECTI Transactions on Electrical Engineering, Electronics, and Communications, vol. 17, no. 1; 2019, pp. 14-23.
  • Singhal R.,Padhee S.,Kaur G. Design of fractional order PID controller for speed control of DC motor. International Journal of Scientific and Research Publications, vol. 2, no. 6; 2012, pp. 1-8.
  • Ziegler J.G.,Nichols N.B. Optimum settings for automatic controllers. trans. ASME, vol. 64, no. 11; 1942.
  • Astrom K.J. PID controllers. Theory, Design, and Tuning, 1995.
  • Joseph S.B.,Dada E.G.,Abidemi A.,Oyewola D.O.,Khammas B.M. Metaheuristic algorithms for PID controller parameters tuning: Review, approaches and open problems. Heliyon, 2022, p. e09399.
  • Hekimoğlu B. Böbrek-ilhamlı Algoritma ile Ayarlanan PID Kontrolör Kullanarak DC Motor Hız Kontrolü. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 8, no. 2; 2019, pp. 652-663.
  • Ogata K. Modern control engineering. Prentice hall Upper Saddle River, NJ, 2010.
  • Mirjalili S. Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural computing and applications, vol. 27, no. 4; 2016, pp. 1053-1073.
  • Wikelski M.,Moskowitz D.,Adelman J.S.,Cochran J.,Wilcove D.S.,May M.L. Simple rules guide dragonfly migration. Biology letters, vol. 2, no. 3; 2006, pp. 325-329.
  • Russell R.W.,May M.L.,Soltesz K.L.,Fitzpatrick J.W. Massive swarm migrations of dragonflies (Odonata) in eastern North America. The American Midland Naturalist, vol. 140, no. 2; 1998, pp. 325-342.
  • Reynolds C.W. Flocks, herds and schools: A distributed behavioral model. in Proceedings of the 14th annual conference on Computer graphics and interactive techniques, 1987, pp. 25-34.
  • Das S.,Saha S.,Das S.,Gupta A. On the selection of tuning methodology of FOPID controllers for the control of higher order processes. ISA transactions, vol. 50, no. 3; 2011, pp. 376-388.
  • Podlubny I. Fractional-order systems and PIλDµ controllers. IEEE Transactions on automatic control, vol. 44, no. 1; 1999, pp. 208-214.
  • Shah P.,Agashe S. Review of fractional PID controller. Mechatronics, vol. 38, 2016, pp. 29-41.
  • Atherton D. Control engineering. Bookboon, 2009.
  • Tepljakov A. FOMCON: fractional-order modeling and control toolbox. Fractional-order modeling and control of dynamic systems, 2017, pp. 107-129.
  • Şahin A.K.,Akyazı Ö.,Sahin E.,Çakır O. DC Motorun Hız Kontrolü İçin Meta-Sezgisel Algoritma Tabanlı PID Denetleyici Tasarımı. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 10, no. 2; pp. 533-549.