BİR ISI BORULU NÜKLEER REAKTÖRDE ISI LİMİTASYONLARININ ANALİZİ

Dünyada nükleer reaktörlerde kazaların meydana gelmesinden sonra, daha güvenli ısı çekimini sağlayan sistemler kullanılmaya başlanmıştır. Bunlardan biri de pasif güvenlik sistemi olan ısı borulu nükleer reaktördür. Isı boruları kullanılırken en önemli konulardan biri ısı limitasyonlarının belirlenmesidir. Bu makalede 900 K’de çalışan ısı borulu reaktörde ısı limitasyonları hesaplanmıştır. Isı borusunun çalışma sıvıları olarak potasyum, sodyum ve lityum ayrı ayrı ele alınmıştır. Isı borusu limitasyonlarının hesaplamalarında en uygun korelasyonlar kullanılmıştır. Üç farklı çalışma sıvısının ısı limitasyonları birbirleriyle kıyaslanmıştır. 900 K için potasyum, sodyum, ve lityum çalışma sıvılı ısı boruları için en yüksek ısı çekimleri sırasıyla 35,110 ve 24 kW olarak bulunmuştur. Isı limitasyonları kıyaslandığında 900 K için en yüksek ısı çekilimi sodyum soğutuculu ısı borusu olarak saptanmıştır.

___

  • Ray MP, Poston DI, Dasari VR, Reid RS. Design of megawatt power level heat pipe reactors: Los Alamos National Lab. (LANL). Los Alamos, NM, United States; 2015.
  • Alizadehdakhel A, Rahimi M, Alsairafil AA. CFD modelling of flow and heat transfer in a thermosyphon. International Communications in Heat Mass Transfer 2010; 37: 312–318.
  • Panda KK, Dulera IV, Basak A. Numerical simulation of high temperature sodium heat pipe for passive heat removal in nuclear reactors. Nuclear Engineering and Design 2017; 323: 376–385.
  • Zhang Z, Chai X, Wang C, Sun H, Zhang D, Tian W, Qiu S, Su GH. Numerical investigation on startup characteristics of high temperature heat pipe for nuclear reactor. Nuclear Engineering and Design 2021; 378: 1–16.
  • Hernandez R, Todosow M, Brown NR. Micro heat pipe nuclear reactor concepts: Analysis of fuel cycle performance and environmental impacts. Annals of Nuclear Energy 2019; 126: 419–426.
  • Laubsher R, Dobson RT. Theoretical and experimental modelling of a heat pipe heat exchanger for high temperature nuclear reactor technology. Applied Thermal Engineering 2013; 61: 259–267.
  • Jeong YS, Kim KM, Kim IG, Bang IC. Hybrid heat pipe based passive in-core cooling system for advanced nuclear power plant. Applied Thermal Engineering 2015; 90: 609–618.
  • Guo Y, Su Z, Li Z, Wang K, Liu X. An improved model of the heat pipe based on the network method applied on a heat pipe cooled reactor. Frontiers in Energy Research 2022; 10: 1–16.
  • Nemec P, Caja A, Malcho M. Mathematical model for heat transfer limitations of heat pipe. Mathematical and Computer Modelling 2013; 57: 126–136.
  • Tian Z, Zhang J, Wang C, Guo K, Liu Y, Zhang D, Tian W, Qiu S, Sua GH. Experimental evaluation on heat transfer limits of sodium heat pipe with screen mesh for nuclear reactor system. Applied Thermal Engineering 2022; 209: 1–12.
  • Yang H, Handekar S, Groll M. Operational limit of closed loop pulsating heat pipes. Applied Thermal Engineering 2008; 28: 49–59.
  • Melnyk RS. Heat transfer limitations of heat pipes for a cooling systems of electronic components, In: IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON), Kiev, Ukraine; 2017.
  • Mansour M. Heat transport limitations and overall heat transfer coefficient for a heat pipe. International Journal of Engineering and Advanced Technology 2016; 5: 119-123.
  • Levinsky A, Wyk JJ, Arafat Y ve ark. Westinghouse eVinci reactor for off-grid markets transactions of the American nuclear society, Orlando, Florida, November 11-15, 2018.
  • Hu G, Hu R, Zou L. Development of heat pipe reactor modeling SAM. Nuclear Science and Engineering Division. Argonne National Laboratory; 2019.
  • Peterson G. An overview of micro heat pipe research and development. Journal Applied Mechanics Review 1992; 45: 175–189.
  • Karabulut K, Alnak DE. Investigation of heat transfer and flow properties in separated flow and reattachment regions for liquid sodium flow at fast reactors. Nuclear Engineering and Design 2021; 379: 1–5.
  • Faghri A, Zhang Y. Transport phenomena in multiphase systems, Elsevier, Burlington, MA, 2006.
  • Faghri A, Zhang Y. Howell J, Advanced heat and mass transfer, 1st ed., Global Digital Press, Columbia, MO, 2010.
  • Ivanovskii MN, Sorokin VP, Yagodkin IV. The physical principles of heat pipes, Clarendon Press, Oxford, United Kingdom, 1982.
  • Vargaftik NB. Handbook of physical properties of liquids and gases, Hemisphere, New York, NY, 1975.
  • Busse CA. Theory of the ultimate transfer of cylindrical heat pipes. International Journal of Heat and Mass Transfer 1973; 16: 169–186.
  • Chi W. Heat pipe theory and practice. Hemisphere Publishing Corporation, New York; 1976.
  • Kumaresan G, Venkatachalapathy S. A review on heat transfer enhancement studies of heat pipes using nanofluids. Frontiers in Heat Pipes (FHP) 2012; 3: 1–8.
  • Mahdavia M, Tiaria S, Schampheleireb SD, Qiu S. Experimental study of the thermal characteristics of a heat pipe. Experimental Thermal and Fluid Science 2018; 93: 292–304.
  • Faghri A. Heat pipe science and technology. 1st ed. Taylor & Francis. Washington, D.C; 1995.
  • Faghri A, Thomas S. Performance characteristics of a concentric annular heat pipe: Part I-experimental prediction and analysis of the capillary limit. Journal of Heat Transfer 1989; 111: 844–850.