Mathematica Yazılımı Kullanılarak Yakın Kızılötesi ve XUV Bölgesinde Asal Gazların Kırılma İndisi Değerlerinin Hesaplanması

Bu çalışmada, görünür, kızılötesi ve aşırı ultraviyole (XUV) bölgesindeki kırılma indisleri Mathematica yazılımı kullanılarak hesaplanmıştır. Atomik saçılma faktörleri yüksek foton enerji aralığı (20-60 eV) için simülasyonu gerçekleştirilmiştir. Atomik saçılma faktörleri kullanılarak kırılma indisi değerlerinin gerçek ve sanal kısmı, foton enerjisinin bir fonksiyonu olarak hesaplandı. Bu çalışmanın amacı, farklı dalga boyu bölgelerinde asal gazların kırılma indisini hesaplayan bir simülasyon programı sunmaktır. Yakın kızılötesi ve XUV bölgesindeki helyum (He), neon (Ne), argon (Ar) ve xenon (Xe) kırılma indisleri Mathematica yazılımı kullanılarak hesaplandı. Kırılma indisinin uygulama alanları bahsedilmiştir. Kırılma indislerini hesaplayan Mathematica programı Ek'te sunulmaktadır.

Computation of Refractive Index Values of Inert Gases at Near-Infrared and XUV Region Based on Mathematica Software

In this study, refractive indices in the visible, near-infrared, and extreme ultraviolet (XUV)regions are calculated based on Mathematica software. Atomic scattering factors are simulatedfor a high photon energy range (20-60 eV). By using the atomic scattering factors, the real andimaginary part of the index of refraction values are plotted as a function of photon energy. Thiswork aims to present a computational program, which calculates the index of refraction of theinert gases at different wavelength regions. The refractive indices of gases, namely helium (He),neon (Ne), argon (Ar), and xenon (Xe) in the near-infrared and XUV region are computed byusing Mathematica software. The applications of the index of refraction are discussed in the paper.The Mathematica program calculating the refractive indices is presented in the Appendix.

___

  • [1] Paskov, P.P., Refractive indices of InSb, InAs, GaSb, InAsxSb1−x, and In1−xGaxSb: Effects of free carriers, Journal of Applied Physics, 81(4) 1890-1898, 1997.
  • [2] Rappl, P.H.O., McCann, P.J., Development of a novel epitaxial-layer segmentation method for optoelectronic device fabrication, IEEE Photonics Technology Letters, 15(3), 374- 376, 2003.
  • [3] Tripathy, S.K., Refractive indices of semiconductors from energy gaps, Optical Materials, 46, 240-246, 2015.
  • [4] Penn, D.R., Wave-number-dependent dielectric function of semiconductors, Physical Review, 128(5), 2093-2097, 1962.
  • [5] Naccarato, F., Ricci, F., Suntivich, J., Hautier, G., Wirtz, L., Rignanese, G.M., Searching for materials with high refractive index and wide band gap: A first-principles highthroughput study, Physical Review Materials, 3(4), 044602, 2019.
  • [6] Reddy, R.R., Gopal, K.R., Narasimhulu, K., Reddy, L.S.S., Kumar, K.R., Reddy, C.V.K., Ahmed, S.N., Correlation between optical electronegativity and refractive index of ternary chalcopyrites, semiconductors, insulators, oxides and alkali halides, Optical Materials, 31(2), 209-212, 2008.
  • [7] Reddy, R.R., Gopal, K.R., Narasimhulu, K., Reddy, L.S.S., Kumar, K.R., Balakrishnaiah, G., Kumar, M.R., Interrelationship between structural, optical, electronic and elastic properties of materials, Journal of Alloys and Compounds, 473(1-2), 28-35, 2009.
  • [8] Ahmad, S., Ashraf, M., Ahmad, A., Singh, D.V., Electronic and Optical Properties of Semiconductor and Alkali Halides, Arabian Journal for Science and Engineering, 38(7), 1889- 1894, 2013.
  • [9] Dalgarno, A., Kingston, A.E., The refractive indices and Verdet constants of the inert gases, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 259(1298), 424-431, 1960.
  • [10] Rogers, E.T.F., Modelling of capillary high harmonic generation, PhD thesis, University of Southampton, 2008.
  • [11] Cuthbertson, C., XI. New determinations of some constants of the inert gases, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 21(121), 69-77, 1911.
  • [12] Cuthbertson, C., Cuthbertson, M., The refraction and dispersion of neon and helium, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 135(826), 40-47, 1932.
  • [13] Korff, S.A., Breit, G., Optical dispersion, Reviews of Modern Physics, 4(3), 471-503, 1932.
  • [14] Ingersoll, L.R., Liebenberg, D.H., Faraday effect in gases and vapors II, Journal of the Optical Society of America, 46(7), 538-542, 1956.
  • [15] Pekeris, C.L., 11 S and 23 S States of Helium, Physical Review, 115(5), 1216-1221, 1959.
  • [16] Chantler, C.T., Olsen, K., Dragoset, R.A., Chang, J., Kishore, A.R., Kotochigova, S.A., Zucker, D.S., X-ray form factor, attenuation, and scattering tables, 22 Mayıs 2020 tarihinde https://www.nist.gov/pml/x-ray-form-factor-attenuation-and-scattering-tables web sitesinden alınmıştır.
  • [17] Chantler, C.T., Detailed tabulation of atomic form factors, photoelectric absorption and scattering cross section, and mass attenuation coefficients in the vicinity of absorption edges in the soft x-ray (Z=30–36, Z=60–89, E=0.1 keV–10 keV), addressing convergence issues of earlier work, Journal of Physical and Chemical Reference Data, 29(4), 597-1056, 2000.
  • [18] Chantler, C.T., Theoretical form factor, attenuation, and scattering tabulation for Z=1–92 from E=1–10 eV to E=0.4–1.0 MeV, Journal of Physical and Chemical Reference Data, 24(1), 71-643, 1995.
  • [19] Mathematica Version 10.0., Wolfram Research, Inc., Champaign, Illinois, 2014.
  • [20] Ciddor, P.E., Refractive index of air: 3. The roles of CO2, H2O, and refractivity virials:erratum, Applied Optics, 41(33), 7036-7036, 2002.
  • [21] Henke, B.L., Gullikson, E.M., Davis, J.C., X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92, Atomic Data and Nuclear Data Tables, 54(2), 181-342, 1993.