Laboratuvar Koşullarında Yüksek Glukoza Maruz Kalmış İnsan Eritrositlerinde Kondroitin-4-Sülfatın Antioksidan Savunma Sistemi Üzerine Etkisi

Bu çalışmada, yüksek glukoza maruz kalmış insan eritrositlerinde kondroitin-4- sülfatın (C4S) antioksidan savunma sistemine olan etkisi araştırılmıştır. Eritrosit süspansiyonu hazırlamak için, sigara içmeyen, 20-40 yaş aralığında sağlıklı gönüllülerden 10-20 ml venöz kanı etilendiamin tetraasetik asitli (EDTA) tüplere toplanmıştır. İn vitro uygulamalar için kanlar 6 gruba ayrılmıştır. Tüm gruplarda antioksidan savunma sistemi üzerine olan etkilerin belirlenmesi için süperoksit dismutaz (SOD), katalaz (CAT), glutatyon peroksidaz (GSH-Px), asetilkolinesteraz (AChE) enzim aktiviteleri, glutatyon (GSH) ve MDA düzeyleri ölçülmüştür. İstatistiksel değerlendirmeler sonucunda, C4S uygulanan gruplar ile sadece glukoz uygulanan gruplar karşılaştırıldığında GSH-Px ve AChE enzim aktivitelerinde önemli ölçüde artış (p

The Effect on Antioxidant Defense System of Chondroitin-4-Sulphate in Human Erythrocytes Subject to High Glucose Levels: In The Laboratory Conditions

The purpose of this research was to evaluation the effects on antioxidant defensesystem of chondroitin-4-sulphate (C4S) in high glucose treated human erythrocytes. 10-20 ml venous blood samples from ten healthy volunteers ages 20-40, nonsmoker, wereaccumulated in ethylenediamine tetraacetic acid (EDTA) vials for the preparation of redblood cell (RBC) suspensions. Blood for in vitro treatments was divided into six groups.The activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase(GSH-Px), acetylcholinesterase (AChE), the levels of glutathione (GSH) andmalondialdehyde (MDA) were calculated to determine the effects on antioxidant defensesystem in all groups. As a result of the statistical evaluations, the significant increases(p

___

  • Viskupicova, J., Blaskovic, D., Galiniak, S., et al., Effect of high glucose concentrations on human erythrocytes in vitro, Redox Biology, 5, 381-387, 2015.
  • Sompong, W., Cheng, H., Adisakwattana, S., Protective effects of ferulic acid on high glucose-induced protein glycation, lipid peroxidation, and membrane ıon pump activity in human eryhrocytes, Plos one, DOI:10.1371/journal.pone.012495, 2015.
  • Memişoğulları, R., Taysı, S., Bakan, E., et al., Antioxidant status and lipid peroxidation in type II diabetes mellitus, Cell Biochemistry and Function, 21, 291-296, 2003.
  • Memişoğulları, R., Diyabette serbest radikallerin rolü ve antioksidanların etkisi, Düzce Tıp Fakültesi Dergisi, 3, 30-39, 2005.
  • Okoko, T., Ere, D., Antioxidant activities of Solenostemon monostachyus leaf extract using in vitro methods, Scientific Research and Essays, 7, 621-626, 2012.
  • Cheesman, K.H., Slater, T.F., An introduction to free radical biochemistry, Br. Med. Bull., 49, 481-493, 1993.
  • Campo, G.M., Avenoso, A., et al., Hyaluronic acid and chondroitin-4-sulphate treatment reduces damage in carbon tetrachloride-induced acute rat liver injury, Life Sciences, 74, 1289-305, 2004.
  • Campo, G.M., Avenoso, A., Campo, S., et al., The antioxidant activity of chondroitin-4-sulphate, in carbon tetrachloride-induced acute hepatitis in ice, involves NF-ҡB and caspase activation, British Journal of Pharmacology, 155, 945-956, 2008.
  • Balkan, S., Aktaç, T., Protective effects of α-lipoic acid and chondroitin-4- sulfate against benomyl-induced toxicity in rats, Toxicology and Enviromental Chemistry, DOI:10.1080/02772248.2014.897707, 2014.
  • Volpi, N., Chondroitin Sulfate: Structure, Role and Pharmacological Activity, Adv. Pharmcol. Elsevier, 53, ISBN:9780080471952, 2006.
  • Marar, T., Amelioration of glucose induced hemolysis of human erythrocytes by vitamin E, Chemico-Biological Interactions, 193, 149-153, 2011.
  • Jain, S.K., Lim, G., Pyrıdoxine and pyridoxamine inhibits superoxide radicals and prevents lipid peroxidation, protein glycosylation, and (Na+ + K+) ATP ase activity reduction in high glucose-treated human erythrocytes, Free Radical Biology and Medicine, 30, 232-237, 2001.
  • Verma, R.J., Trivedi M.H., Ahmedabad C.N.J., Amelioration by black tea extract of sodium fluoride induced hemoylysis of human red blood cell corpuscles, Research Report Fluoride, 39(4), 261-265, 2006.
  • Ferreira, A.L.A., Machado, P.E.A., Matsubara, L.S., Lipid peroxidation, antioxidant enzymes and glutathione levels in human erythrocytes exposed to colloidal iron hydroxide in vitro, Braz. J. Med. Biol. Res., 32, 689-694, 1999.
  • Drabkin, D.L., The crystallographic and optical properties of the hemoglobin of man in comparison with those of other species, J. Biol. Chem., 163, 703, 1946.
  • Beutler, E., Duron, O., Kelly, B.M., Improved method for the determination of blood glutathione, J. Lab. Clin. Med., 61, 882-888, 1963.
  • Sun, Y., Oberley. L.W., Li, Y., A simple method for clinical assay of superoxide dismutase, Clinical Chemistry, 34, 497-500, 1988.
  • Aebi, H., Catalase in vitro, Methods Enzymology, 105, 121-127, 1984.
  • Paglia, D.E., Valentine, W.N., Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase, J. Lab. Clin. Med., 70, 158-169, 1976.
  • Ellman, G.L., Courtney, K.D., Andres, V., et al., A new and rapid colorimetric determination of acetylcholinesterase activity, Biochemical Pharmacology, 7(2), 88-90, 1961.
  • Dodge, J.T., Mitchell, C., Hanahan, D.J., The preparation and chemical characterization of hemoglobin-free ghosts of human erythrocytes, Arch. Biochem. Biophys., 100, 119-130, 1963.
  • Ohkawa, H., Ohishi, N., Yagi, K., Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction, Anal. Biochem., 95(2), 351-358, 1979.
  • ang, H.L., Chen, S.C., Chang, N.W., et al., Protection from oxidative damage using Bidenspilosa extracts in normal human erythrocytes, Food and Chemical Toxicology, 44, 1513-1521, 2006.
  • Jain, S.K., Hyperglycemia can cause membrane lipid peroxidation and osmotic fragility in human red blood cells, The Journal of Biological Chemistry, 15, 21340-21345, 1989.
  • Zohra, M., Fawzia, A., Hemolytic activity of different herbal extracts used in Algeria, International Journal of Pharma Sciences and Research, 5, 495-500, 2014.
  • Tupe, R.S., Sankhe, N.M., Shaikh, S.A., Phatak, D.V., et al., Aqueous extract of some indigenous medicinal plants inhibits glycation at multiple stages and protects erythrocytes from oxidative damage an in vitro study, J. Food Sci. Technol., 52, 1911- 1923, 2015.
  • Yang, W., Fu, J., Yu, M., et al., Effects of flaxseed oil on anti-oxidative system and membrane deformation of human peripheral blood erythrocytes in high glucose level, Lipid in Health and Disease, 11, 88, 2012.
  • May, J.M., Qu, Z.C., Whitesell, R.R., et al., Ascorbate recycling in human erythrocytes: Role of GSH in reducing dehydroascorbate, Free Radical Biology and Medicine, 20, 543-551, 1996.
  • Yılmaz, O., Özkan, Y., Yıldırım, M., et al., Effects of alpha lipoic acid, ascorbic acids-6-palmitate, and fish oil on the glutathione, malonaldehyde, and fatty acids levels in erythrocytes of streptozotocin induced diabetic malerats, Cell Biochem., 86, 530-539, 2002.
  • Moustafa, Y.M., Moustafa, R.M., Belacy, A., et al., Effects of acute exposure to the radio frequency fields of cellular phones on plasma lipid peroxide and antioxidase activities in human erythrocytes, Journal of Pharmaceutical and Biomedical Analysis, 26, 605-608, 2001.
  • Taleb-Senouci, D., Ghomari H., Krouf, D., et al., Antioxidant effect of Ajuga iva extract in streptozotocin-induced diabeticrats, Phytomedicine, 16, 623-631, 2009.
  • De Bona, K., Belle L.P., Bittencourt, P.E.R., et al., Erythrocytic enzymes and antioxidant status in people with type 2 diabetes: Benificial effect of Syzygium cumini leaf extract in vitro, Diabetes Research and Clinical Practice, 94, 84-90, 2011.
  • Matkovics, B., Varga, S.I., Szabo, L., et al., The effect of diabetes on the activities of the peroxide metabolism enzymes, Horm. Metab. Res., 14, 77-79, 1982.
  • Kedrioza-Kornatowska, K.Z., Luciak, M., Blaszczyk, J., et al., Lipid peroxidation and activities of antioxidant enzymes in erythrocytes of patients with noninsulin dependent diabetes with or without diabetic nephro path, Nephrol Dial Transplant, 13, 389-392, 1998.
  • Aebi, H., Catalase. In methods of enzymatic analysis, Bergmeyer H.U. (Ed.), Verlag Chemie, Weinheim, 673-680, 1974.
  • Yadav, P., Sarkar, S., Bhatnagar, D., Lipid peroxidation and antioxidant enzymes in erythrocytes and tissues in aged diabetic rats, Indian J. Exp. Biol., 35, 389- 392, 1997.
  • Kesavulu, M.M., Rao, B.K., Giri, R., et al., Lipid peroxidation and antioxidant enzyme status in type 2 diabetics with coronary hearth disease, Diabetes Res. Clin. Prac., 53, 33-39, 2001.
  • Mikashinovich, Z.I., Belousova, E.S., Biochemical changes in erythrocytes as a molecular marker of cell damage during long-term simvastatin treatment, Cell Technologies in Biology and Medicine, 161(4), 600-603, 2016.
  • Salguerio, C.F., Leal, C.Q., Bianchini, M.C., et al., The influence of Bauhinia forficata Link subsp. pruinosa tea on lipid peroxidation and non-protein SH groups in human erythrocytes exposed to high glocose concentrations, Journal of Ethnopharmacology, 148, 81-87, 2013.
  • Halifeoğlu, İ., Karataş, F., Çolak, R., et al., Tip 2 diyabetik hastalarda tedavi öncesi ve tedavi sonrası oksidan ve antioksidan durum, Fırat Tıp Dergisi, 10, 117-122, 2005.