Cladosporium Cladosporioides Fungus Hifleri Üzerinde RuO_2 Yapılarının Oluşumu ve Özelliklerinin İncelenmesi

Bu çalışmada RuO2 yüksek spesifik kapasitans değerinden dolayı Cladosporium cladosporioides mantar hifleri üzerinde kimyasal çöktürme yöntemiyle büyütüldü. Kimyasal çöktürme sonucunda elde edilen malzemenin morfolojik özellikleri taramalı elektro mikroskobu (SEM),  yüzey alanı Brunauer–Emmett–Teller (BET) cihazı, cyclic voltametri (CV), dolma-boşalma ve elektrokimyasal empedans spektroskopi gibi elektrokimyasal özellikleri ise Gamry 3000 potansiostat sistemi ile belirlendi.

The Formation of RuO_2 Structures on Cladosporium Cladosporioides Hyphal and an Investigation of their Properties

In this study, ruthenium oxide (RuO2) was grown on Cladosporium Cladosporioides hyphal using a chemical precipitation method. The morphological characteristics of the material obtained by chemical precipitation method were determined by Scanning Electron Microscope (SEM); its surface area by Brunauer-Emmett-Teller (BET) equipment and its electrochemical properties, such as charging–discharging, cyclic voltammetry (CV) and electrochemical impedance characteristics, using a Gamry 3000 potentiostat system.

___

  • [1] Ahn, Y.R., Song, M.Y., Jo, S.M., Park, C.R., Kim, D.Y., Electrochemical capacitors based on electrodeposited ruthenium oxide on nanofibre substrates, Nanotechnology, 17 (12), 2865, 2006.
  • [2] Patake, V.D., Lokhande, C.D., Joo, O.S., Electrodeposited ruthenium oxide thin films for supercapacitor: effect of surface treatments, Appl Surf Sci, 255 (7), 4192-4196, 2009.
  • [3] Hu, C.C., Huang, Y.H., Chang, K.H., Annealing effects on the physicochemical characteristics of hydrous ruthenium and ruthenium-iridium oxides for electrochemical supercapacitors, J Power Sources, 108 (1–2), 117-127, 2002.
  • [4] Yan, J., Wei, T., Cheng, J., Fan, Z., Zhang, M., Preparation and electrochemical properties of lamellar MnO2 for supercapacitors, Mater Res Bull, 45 (2), 210-215, 2010.
  • [5] Jiang, J., Kucernak, A., Electrochemical supercapacitor material based on manganese oxide: preparation and characterization, Electrochim Acta, 47 (15), 2381-2386, 2002.
  • [6] Atalay, F.E., Asma, D, Kaya, H, Ozbey, E, The fabrication of metal oxide nanostructures using Deinococcus radiodurans bacteria for supercapacitor, Materials Science in Semiconductor Processing, 38, 314-318, 2015.
  • [7] Atalay, F.E., Kaya, H, Asma, D, Bingöl, A, Helical Microtubules of Nanostructured Cobalt Oxide for Electrochemical Energy Storage Applications, Biointerface Research in Applied Chemistry 6 (2), 1099-1103, 2016.
  • [8] Patil, U.M., Salunkhe, R.R., Gurav, K.V., Lokhande, C.D., Chemically deposited nanocrystalline NiO thin films for supercapacitor application, Appl Surf Sci, 255(2), 2603-2607, 2008.
  • [9] Nelson, P.A., Owen, J.R., A high-performance supercapacitor/battery hybrid incorporating templated mesoporous electrodes, J. Electrochem. Soc., 150 (10), A1313, 2003.
  • [10] Kandalkar, S.G., Gunjakar, J.L., Lokhande, C.D., Preparation of cobalt oxide thin films and its use in supercapacitor application, Appl Surf Sci, 254 (17), 5540-5544, 2008,
  • [11] Miura, N., Oonishi, S., RajendraPrasad, K., Indium tin oxide/carbon composite electrode material for electrochemical supercapacitors, Electrochem Solid-State Lett, 7 (8), A247, 2004.
  • [12] Hu, C.C., Huang, C.M., Chang, K.H., Anodic deposition of porous vanadium oxide network with high power characteristics for pseudocapacitors, J. Power Sources, 185 (2), 1594-1597, 2008.
  • [13] da Silva, D.L., Delatorre, R.G., Pattanaik, G., Zangari, G., Figueiredo, W., Blum, R.-P., et al., Electrochemical synthesis of vanadium oxide nanofibers, J. Electrochem Soc, 155 (1), E14, 2008.
  • [14] Zhou, X., Chen, H., Shu, D., He, C., Nan, J., Study on the electrochemical behavior of vanadium nitride as a promising supercapacitor material, J. Phys. Chem. Solids, 70 (2), 495-500, 2009.
  • [15] Nakayama, M., Tanaka, A., Sato, Y., Tonosaki, T., Ogura, K., Electrodeposition of manganese and molybdenum mixed oxide thin films and their charge storage properties, Langmuir, 21 (13), 5907-5913, 2005.
  • [16] Babakhani, B., Ivey, D.G., Anodic deposition of manganese oxide electrodes with rod-like structures for application as electrochemical capacitors, J. Power Sources, 195 (7), 2110-2117, 2010.
  • [17] Zheng, J.-P., Cygan, P.-J., Jow, T.-R., Hydrous rutheniumoxide as an electrode material for electrochemical capacitors, J. Electrochem. Soc., 142, 2699–2703, 1995.
  • [18] Zheng, J.-P., Ruthenium oxide-carbon composite electrodes for electrochemical capacitors, Electrochem, Solid-State Lett. 2, 359–361, 1999.
  • [19] Ramani, M., Haran, B.S., White, R.E., Popov, B.N., Arsov, L., Studies on activated carbon capacitor materials loaded with different amounts of ruthenium oxide, J. Power Sources, 93, 209–214, 2001.
  • [20] Hu, C.-C., Chen, W.-C., Chang, K.-H., How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors, J. Electrochem. Soc. 151, A281–A290, 2004.
  • [21] Lee, Y.-H., Oh, J.-G., Oh, H.-S., Kim, H., Novel method for the preparation of carbon supported nano-sized amorphous ruthenium oxides for super capacitors, Electrochem. Commun., 10, 1035–1037, 2008.
  • [22] Atalay, F.E., Asma, D, Kaya, H, Bingol, A, Yaya, P, Synthesis of NiO nanostructures using Cladosporium cladosporioides fungi for energy storage applications, Nanomaterials and Nanotechnology, 2016
  • [23] Fontes, A. M., Geris, R., dos Santos, A.V., Pereira, M. G., Ramalho, J. G. S., da Silva A. F., Malta, M., Bio-inspired Au microtubes based on morphology of filamentous fungi, Biomater. Sci., 2, 956-960, 2014.
  • [24] Li, Z., Chung, S.‐W., Nam, J.‐M., Ginger, D. S., Mirkin, C. A., Living Templates for the Hierarchical Assembly of Gold Nanoparticles, Angew. Chem. Int. Ed., 42, 2306 – 2309, 2003.
  • [25] Sugunan, A., Melin, P., Schnürer, J., Hilborn, J. G., Dutta, J., Nutrition‐Driven Assembly of Colloidal Nanoparticles: Growing Fungi Assemble Gold Nanoparticles as Microwires, Adv. Mater., 19, 77–81, 2007.
  • [26] Bigall, N. C., Reitzig, M., Naumann, W., Simon, P., van Pee, K.-H., Eychmüller, A., Fungal Templates for Noble-Metal Nanoparticles and Their Applica-tion in Catalysis, Angew. Chem. Int. Ed., 47, 7876 –7879, 2008.
  • [27] Fakhrullin, R.F., Zamaleeva, A. I., Minullina, R. T., Konnova, S. A., Paunov, V. N., Cyborg cells: functionalisation of living cells with polymers and nanomaterials, Chem. Soc. Rev., 41, 4189-4206, 2012.
  • [28] Kampouris, D. K., Ji, X., Randviir, E. P., Banks, C. E., A new approach for the improved interpretation of capacitance measurements for materials utilised in energy storage, RSC Adv., 5, 12782-12791, 2015.