Beyin felçli çocuklarda yürüteç kullanımı sırasında üst ekstremite kinetikleri ve enerji tüketimi

Amaç: Çalışmada, spastik diplejik beyin felçli çocuklarda, ön ve arka yürüteç kullanımı sırasında üst ekstremite (ÜE) kinetik verileri ile enerji tüketim indeksi arasındaki ilişkiler araştırıldı. Çalışma planı: Yürüteçle yürüyebilen, spastik diplejik beyin felçli 10 çocukta (3 erkek, 7 kız; ort. yaş 12.1; dağılım 8-18) ÜE kinematiği ve kinetiği ile ilgili yürüme analizleri yapıldı. Üst ekstremite kinetiği ile ilgili veriler yürüteç tutacaklarına yerleştirilen donanım ile elde edildi. Enerji tüketim indeksi, kalp hızı yöntemiyle (ETİKH), yürüme sırasındaki kalp hızından dinlenme anındaki kalp hızının çıkarılması ve sonucun yürüyüş hızına bölünmesiyle hesaplandı. Kinetik değişkenler ile ETİKH ve yürümenin zamansal ve adım parametreleri arasındaki korelasyonlar araştırıldı. Sonuçlar: Genel olarak, ön yürüteç kullanmada ETİKH’nin daha yüksek olduğu görüldü. Birçok kinetik değişken, yürümenin zamansal ve adım parametreleri ve ETİKH ile korelasyon gösterdi. Anlamlı korelasyonların tümü (r>0.80; p

Upper extremity kinetics and energy expenditure during walker-assisted gait in children with cerebral palsy

Objectives: We evaluated the relationships between upper extremity (UE) kinetics and the energy expenditure index during anterior and posterior walker-assisted gait in children with spastic diplegic cerebral palsy (CP). Methods: Ten children (3 boys, 7 girls; mean age 12.1 years; range 8 to 18 years) with spastic diplegic CP, who ambulated with a walker underwent gait analyses that included UE kinematics and kinetics. Upper extremity kinetics were obtained using instrumented walker handles. Energy expenditure index was obtained using the heart rate method (EEIHR) by subtracting resting heart rate from walking heart rate, and dividing by the walking speed. Correlations were sought between the kinetic variables and the EEIHR and temporal and stride parameters. Results: In general, anterior walker use was associated with a higher EEIHR. Several kinetic variables correlated well with temporal and stride parameters, as well as the EEIHR. All of the signi&#64257;cant correlations (r>0.80; p<0.005) occurred during anterior walker use and involved joint reaction forces (JRF) rather than moments. Some variables showed multiple strong correlations during anterior walker use, including the medial JRF in the wrist, the posterior JRF in the elbow, and the inferior and superior JRFs in the shoulder. Conclusion: The observed correlations may indicate a relationship between the force used to advance the body forward within the walker frame and an increased EEIHR. More work is needed to re&#64257;ne the correlations, and to explore relationships with other variables, including the joint kinematics.

___

  • 1. Yeargin-Allsopp M, Van Naarden Braun K, Doernberg NS, Benedict RE, Kirby RS, Durkin MS. Prevalence of cerebral palsy in 8-year-old children in three areas of the United States in 2002: a multisite collaboration. Pediatrics 2008;121:547-54.
  • 2. Haubert LL, Gutierrez DD, Newsam CJ, Gronley JK, Mulroy SJ, Perry J. A comparison of shoulder joint forces during ambulation with crutches versus a walker in personswith incomplete spinal cord injury. Arch Phys Med Reha- bil 2006;87:63-70.
  • 3. Melis EH, Torres-Moreno R, Barbeau H, Lemaire ED. Analysis of assisted-gait characteristics in persons with incomplete spinal cord injury. Spinal Cord 1999;37:430-9.
  • 4. Requejo PS, Wahl DP, Bontrager EL, Newsam CJ, Gronley JK, Mulroy SJ, et al. Upper extremity kinetics during Lofstrand crutch-assisted gait. Med Eng Phys 2005;27:19-29.
  • 5. Bateni H, Maki BE. Assistive devices for balance and mobility: benefits, demands, and adverse consequences. Arch Phys Med Rehabil 2005;86:134-45.
  • 6. Opila KA, Nicol AC, Paul JP. Forces and impulses during aided gait. Arch Phys Med Rehabil 1987;68:715-22.
  • 7. Slavens BA, Frantz J, Sturm PF, Harris GF. Upper extremity dynamics during Lofstrand crutch-assisted gait in children with myelomeningocele. J Spinal Cord Med 2007;30 Suppl 1:S165-71.
  • 8. Adrezin RS, Cordaro MA, Wang FS, Fast A. Instrumentation and computer interfacing of a standard walker to study user-walker interaction dynamics. In: Proceedings of ASME Bioengineering Division Winter Annual Meeting, Anaheim, CA, Nov 1992. p. 403-5.
  • 9. Fast A, Wang FS, Adrezin RS, Cordaro MA, Ramis J, Sosner J. The instrumented walker: usage patterns and forces. Arch Phys Med Rehabil 1995;76:484-91.
  • 10. Finkel J, Fernie GR, Cleghorn W. A guideline for the design of a four-wheeled walker. Assistive Technology 1997;9:116-29.
  • 11. Pardo RD, Deathe AB, Winter DA. Walker user risk index. A method for quantifying stability in walker users. Am J Phys Med Rehabil 1993;72:301-5.
  • 12. Bachschmidt RA, Harris GF, Hassani S, Carter M, Caudill A, Reiners K, et al. Quantitative study of walker-assisted gait in children with cerebral palsy: Anterior versus posterior walkers. In: Harris GF, Smith P, editors. Pediatric gait: a new millenium in clinical care and motion analysis technology. Piscataway, NJ: Institute of Electrical and Electronics Engineers, Inc.; 2000. p. 217-23.
  • 13. Norman JF, Bossman S, Gardner P, Moen C. Comparison of the energy expenditure index and oxygen consumption index during self-paced walking in children with spastic diplegia cerebral palsy and children without physical disabilities. Pediatr Phys Ther 2004;16:206-11.
  • 14. Raja K, Joseph B, Benjamin S, Minocha V, Rana B. Physiological cost index in cerebral palsy: its role in evaluating the efficiency of ambulation. J Pediatr Orthop 2007;27:130-6.
  • 15. Rose J, Gamble JG, Burgos A, Medeiros J, Haskell WL. Energy expenditure index of walking for normal children and for children with cerebral palsy. Dev Med Child Neurol 1990;32:333-40.
  • 16. Stallings VA, Zemel BS, Davies JC, Cronk CE, Charney EB. Energy expenditure of children and adolescents with severe disabilities: a cerebral palsy model. Am J Clin Nutr 1996;64:627-34.
  • 17. van den Hecke A, Malghem C, Renders A, Detrembleur C, Palumbo S, Lejeune TM. Mechanical work, energetic cost, and gait efficiency in children with cerebral palsy. J Pediatr Orthop 2007;27:643-7.
  • 18. Keefer DJ, Tseh W, Caputo JL, Apperson K, McGreal S, Morgan DW. Comparison of direct and indirect measures of walking energy expenditure in children with hemiplegic cerebral palsy. Dev Med Child Neurol 2004;46:320-4.
  • 19. Provost B, Dieruf K, Burtner PA, Phillips JP, Bernitsky Beddingfield A, Sullivan KJ, et al. Endurance and gait in children with cerebral palsy after intensive body weight-supported treadmill training. Pediatr Phys Ther 2007;19:2-10.
  • 20. Toms B, Harrison B, Bower E. A pilot study to compare the use of prototypes of multipositional paediatric walking sticks and tripods with conventional sticks and tripods by children with cerebral palsy. Child Care Health Dev 2007; 33:96-106.
  • 21. Maltais DB, Pierrynowski MR, Galea VA, Bar-Or O. Physical activity level is associated with the O2 cost of walking in cerebral palsy. Med Sci Sports Exerc 2005;37:347-53.
  • 22. Protas EJ, Raines ML, Tissier S. Comparison of spatiotemporal and energy cost of the use of 3 different walkers and unassisted walking in older adults. Arch Phys Med Rehabil 2007;88:768-73.
  • 23. Ulkar B, Yavuzer G, Güner R, Ergin S. Energy expenditure of the paraplegic gait: comparison between different walking aids and normal subjects. Int J Rehabil Res 2003;26:213-7.
  • 24. Park ES, Park CI, Kim JY. Comparison of anterior and posterior walkers with respect to gait parameters and energy expenditure of children with spastic diplegic cerebral palsy. Yonsei Med J 2001;42:180-4.
  • 25. Mattsson E, Andersson C. Oxygen cost, walking speed, and perceived exertion in children with cerebral palsy when walking with anterior and posterior walkers. Dev Med Child Neurol 1997;39:671-6.
  • 26. Strifling KM, Lu N, Wang M, Cao K, Ackman JD, Klein JP, et al. Comparison of upper extremity kinematics in children with spastic diplegic cerebral palsy using anterior and posterior walkers. Gait Posture 2008;28:412-9.
  • 27. Steinwender G, Saraph V, Scheiber S, Zwick EB, Uitz C, Hackl K. Intrasubject repeatability of gait analysis data in normal and spastic children. Clin Biomech 2000;15:134-9.
  • 28. Wu G, van der Helm FC, Veeger HE, Makhsous M, Van Roy P, Anglin C, et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion-Part II: shoulder, elbow, wrist and hand. J Biomech 2005;38:981-992.
  • 29. Vaughan CL. Appendix B: Detailed mathematics used in GaitLab. In: Vaughan CL, Davis BL, O’Connor JC, editors. Dynamics of human gait. 2nd ed. Cape Town, South Africa: Kiboho Publishers; 1992. p. 83-106.
  • 30. Bachschmidt RA, Harris GF, Simoneau GG. Walker-assisted gait in rehabilitation: a study of biomechanics and instrumentation. IEEE Trans Neural Syst Rehabil Eng 2001; 9:96-105.