Diz fleksiyon kontraktüründe tedavi yaklaşımları

Beyin felcinde en çok etkilenen eklem diz eklemidir. Diz fleksiyon kontraktürü, çömelme pozisyonunda yürümeye, basma fazında stabilite kaybına, ayakta durma ve oturmada ve günlük yaşam aktivitelerinde zorluklara yol açar. Ayrıca, genç erişkin dönemde, patella alta, patellofemoral eklem dejenerasyonu, patella ve tüberküler kırıklarına da neden olabilir. Bu çocuklar ileri yaşlarda, yüksek enerji gerektirdiği için yürümeden bile vazgeçebilirler. Bu yazıda, beyin felçli çocuklarda diz fleksiyon kontraktürlerinin nedenleri, klinik ve radyolojik değerlendirmeler ve tedavi prensipleri gözden geçirildi. Ayrıca, yapılan çalışmalar ve yürüme analizi verileri ışığında diz fleksiyon kontraktürünün biyomekaniksel nedenleri ayrıntılı olarak tartışıldı.

Treatment approaches to flexion contractures of the knee

The knee is the most affected joint in children with cerebral palsy. Flexion contracture of the knee is the cause of crouch gait pattern, instability in stance phase of gait, and difficulties during standing and sitting, and for daily living activities. It may also cause patella alta, degeneration of the patellofemoral joint, and stress fractures of the patella and tibial tubercle in young adults. Children with cerebral palsy may even give up walking due to its high energy demand in the adult period. The purpose of this article is to review the causes of the knee flexion contractures, clinical and radiological evaluations, and treatment principles in children with cerebral palsy. The biomechanical reasons of knee flexion deformity are discussed in detail in the light of previous studies and gait analysis data.

___

  • 1. Freeman M. Gait. In: Cerebral palsy. New York: Springer; 2005. p. 251-386.
  • 2. Wren TA, Rethlefsen S, Kay RM. Prevalence of specific gait abnormalities in children with cerebral palsy: influence of cerebral palsy subtype, age, and previous surgery. J Pediatr Orthop 2005;25:79-83.
  • 3. Sutherland DH, Davids JR. Common gait abnormalities of the knee in cerebral palsy. Clin Orthop Relat Res 1993;(288):139-47.
  • 4. Topoleski TA, Kurtz CA, Grogan DP. Radiographic abnormalities and clinical symptoms associated with patella alta in ambulatory children with cerebral palsy. J Pediatr Orthop 2000;20:636-9.
  • 5. Gage JR. Treatment principles for crouch gait. In: Gage JR, editor. The treatment of gait problems in cerebral palsy. London: Mac Keith Press; 2004. p. 382-97.
  • 6. Arnold AS, Anderson FC, Pandy MG, Delp SL. Muscular contributions to hip and knee extension during the single limb stance phase of normal gait: a framework for investigating the causes of crouch gait. J Biomech 2005; 38:2181-9.
  • 7. Ounpuu S, Gage JR, Davis RB. Three-dimensional lower extremity joint kinetics in normal pediatric gait. J Pediatr Orthop 1991;11:341-9.
  • 8. Kirtley C. Support and forward progression. In: Clinical gait analysis: theory and practice. London: Churchill Livingstone; 2006. p. 237-54.
  • 9. Horstmann HM, Bleck EE. Knee. In: Orthopaedic management in serebral palsy. 2nd ed. London: Mac Keith Press; 2007. p. 303-43.
  • 10. Trost J. Physical assessment and observational gait analysis. In: Gage JR, editor. The treatment of gait problems in cerebral palsy. London: Mac Keith Press; 2004. p. 71-89.
  • 11. Waters RL, Perry J, McDaniels JM, House K. The relative strength of the hamstrings during hip extension. J Bone Joint Surg [Am] 1974;56:1592-7.
  • 12. Arnold AS, Liu MQ, Schwartz MH, Ounpuu S, Delp SL. The role of estimating muscle-tendon lengths and velocities of the hamstrings in the evaluation and treatment of crouch gait. Gait Posture 2006;23:273-81.
  • 13. Delp SL, Arnold AS, Speers RA, Moore CA. Hamstrings and psoas lengths during normal and crouch gait: implications for muscle-tendon surgery. J Orthop Res 1996;14:144-51.
  • 14. Goldberg SR, Anderson FC, Pandy MG, Delp SL. Muscles that influence knee flexion velocity in double support: implications for stiff-knee gait. J Biomech 2004;37:1189-96.
  • 15. Seth A, Liu MQ, Schwartz MH, Anderson FC, Delp SL. Treatment insight from subject-based simulation of crouch gait. In: North American Congress on Biomechanics (NACOB); August 5-9, 2008; Ann Arbor, Michigan, USA. No: 543.
  • 16. Acevedo JS. The infant and child with cerebral palsy. In: Tecklin JS, editor. Pediatric physical therapy. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2007. p. 179-253.
  • 17. Schutte LM, Hayden SW, Gage JR. Lengths of hamstrings and psoas muscles during crouch gait: effects of femoral anteversion. J Orthop Res 1997;15:615-21.
  • 18. Akalan NE. Serebral parezili çocuklarda video bazlı gözlemsel yürüme analizinin gözlemci içi ve gözlemciler arası güvenilirliğinin belirlenmesi [Yüksek lisans Tezi]. İstanbul: İstanbul Üniversitesi Sağlık Bilimleri Enstitüsü; 1999.
  • 19. Krebs DE, Edelstein JE, Fishman S. Reliability of observational kinematic gait analysis. Phys Ther 1985;65: 1027-33.
  • 20. Corry IS, Cosgrove AP, Duffy CM, Taylor TC, Graham HK. Botulinum toxin A in hamstring spasticity. Gait Posture 1999;10:206-10.
  • 21. Halbertsma JP, Göeken LN. Stretching exercises: effect on passive extensibility and stiffness in short hamstrings of healthy subjects. Arch Phys Med Rehabil 1994; 75:976-81.