Bu makalede otomatik gerilim regülatör sistemin oransal integral türev denetleyici optimal parametre değerlerini ayarlamak amacıyla yeni bir algoritma olan deniz yırtıcıları algoritması önerilmiştir. Önerilen algoritma ile terminal geriliminin maksimum yüzde aşımı, yerleşme süresi, yükselme süresi ve kararlı durum hatasını en aza indirmek ve optimal oransal integral türev denetleyicisi ile otomatik gerilim regülatör sisteminin geçici durum yanıtının iyileştirilmesi amaçlanmıştır. Denetleyici parametrelerini ayarlamak için karesel hatanın integrali, ağırlıklı karesel hatanın integrali, zaman’ın karesel integrali ve Zwe-Lee Gaing amaç fonksiyonları kullanılmıştır. Deniz yırtıcıları algoritma tabanlı oransal-integral-türev denetleyicinin performansı, literatürde önerilen çeşitli amaç fonksiyonları kullanılarak gerçekleştirilen farklı meta-sezgisel algoritmalar tarafından uyarlanmış oransal integral türev denetleyicileri ile karşılaştırmalı analizler yapılmıştır. Bu analizler geçici tepki analizi, kök konum analizi ve sağlamlık gibi analiz yöntemleri ile gerçekleştirilmiştir. Simülasyon sonuçları, deniz yırtıcıları algoritmasıyla ayarlanan oransal integral türev kontrollü otomatik gerilim regülatör sisteminin yerleşme süresi, tepe aşımı ve kararlılık açısından daha iyi performans gösterdiğini kanıtlamıştır.
n this study, the emerging, novel marine predators algorithm is proposed to adjust the proportional–integral– derivative controller of the automatic voltage regulator system. With the proposed algorithm, this study aimed to minimize the maximum percent excess of the terminal voltage, settling time, rise time, and steady-state error and improve the transient response of the automatic voltage regulator system with an optimal proportional–integral– derivative controller. The integral of squared error, integral of weighted squared error, squared integral of time, and Zwe-Lee Gaing objective functions were used to set the controller parameters. The performance of the proportional–integral–derivative controller based on the marine predators algorithm was compared with those of the proportional–integral–derivative controllers adapted by different metaheuristic algorithms using various objective functions suggested in the literature. These analyses were conducted using analysis methods such as transient response, root locus, and robustness. The simulation results show better performance in terms of the settling time, over-peak, and stability of the proportional–integral–derivative-controlled automatic voltage regulator system tuned with the marine predators algorithm. "> [PDF] Otomatik Gerilim Regülatör Sistemi için Deniz Yırtıcıları Algoritmasının Performans Analizi | [PDF] Performance Analysis of Marine Predators Algorithm for Automatic Voltage Regulator System Bu makalede otomatik gerilim regülatör sistemin oransal integral türev denetleyici optimal parametre değerlerini ayarlamak amacıyla yeni bir algoritma olan deniz yırtıcıları algoritması önerilmiştir. Önerilen algoritma ile terminal geriliminin maksimum yüzde aşımı, yerleşme süresi, yükselme süresi ve kararlı durum hatasını en aza indirmek ve optimal oransal integral türev denetleyicisi ile otomatik gerilim regülatör sisteminin geçici durum yanıtının iyileştirilmesi amaçlanmıştır. Denetleyici parametrelerini ayarlamak için karesel hatanın integrali, ağırlıklı karesel hatanın integrali, zaman’ın karesel integrali ve Zwe-Lee Gaing amaç fonksiyonları kullanılmıştır. Deniz yırtıcıları algoritma tabanlı oransal-integral-türev denetleyicinin performansı, literatürde önerilen çeşitli amaç fonksiyonları kullanılarak gerçekleştirilen farklı meta-sezgisel algoritmalar tarafından uyarlanmış oransal integral türev denetleyicileri ile karşılaştırmalı analizler yapılmıştır. Bu analizler geçici tepki analizi, kök konum analizi ve sağlamlık gibi analiz yöntemleri ile gerçekleştirilmiştir. Simülasyon sonuçları, deniz yırtıcıları algoritmasıyla ayarlanan oransal integral türev kontrollü otomatik gerilim regülatör sisteminin yerleşme süresi, tepe aşımı ve kararlılık açısından daha iyi performans gösterdiğini kanıtlamıştır. "> Bu makalede otomatik gerilim regülatör sistemin oransal integral türev denetleyici optimal parametre değerlerini ayarlamak amacıyla yeni bir algoritma olan deniz yırtıcıları algoritması önerilmiştir. Önerilen algoritma ile terminal geriliminin maksimum yüzde aşımı, yerleşme süresi, yükselme süresi ve kararlı durum hatasını en aza indirmek ve optimal oransal integral türev denetleyicisi ile otomatik gerilim regülatör sisteminin geçici durum yanıtının iyileştirilmesi amaçlanmıştır. Denetleyici parametrelerini ayarlamak için karesel hatanın integrali, ağırlıklı karesel hatanın integrali, zaman’ın karesel integrali ve Zwe-Lee Gaing amaç fonksiyonları kullanılmıştır. Deniz yırtıcıları algoritma tabanlı oransal-integral-türev denetleyicinin performansı, literatürde önerilen çeşitli amaç fonksiyonları kullanılarak gerçekleştirilen farklı meta-sezgisel algoritmalar tarafından uyarlanmış oransal integral türev denetleyicileri ile karşılaştırmalı analizler yapılmıştır. Bu analizler geçici tepki analizi, kök konum analizi ve sağlamlık gibi analiz yöntemleri ile gerçekleştirilmiştir. Simülasyon sonuçları, deniz yırtıcıları algoritmasıyla ayarlanan oransal integral türev kontrollü otomatik gerilim regülatör sisteminin yerleşme süresi, tepe aşımı ve kararlılık açısından daha iyi performans gösterdiğini kanıtlamıştır.
n this study, the emerging, novel marine predators algorithm is proposed to adjust the proportional–integral– derivative controller of the automatic voltage regulator system. With the proposed algorithm, this study aimed to minimize the maximum percent excess of the terminal voltage, settling time, rise time, and steady-state error and improve the transient response of the automatic voltage regulator system with an optimal proportional–integral– derivative controller. The integral of squared error, integral of weighted squared error, squared integral of time, and Zwe-Lee Gaing objective functions were used to set the controller parameters. The performance of the proportional–integral–derivative controller based on the marine predators algorithm was compared with those of the proportional–integral–derivative controllers adapted by different metaheuristic algorithms using various objective functions suggested in the literature. These analyses were conducted using analysis methods such as transient response, root locus, and robustness. The simulation results show better performance in terms of the settling time, over-peak, and stability of the proportional–integral–derivative-controlled automatic voltage regulator system tuned with the marine predators algorithm. ">

Otomatik Gerilim Regülatör Sistemi için Deniz Yırtıcıları Algoritmasının Performans Analizi

Bu makalede otomatik gerilim regülatör sistemin oransal integral türev denetleyici optimal parametre değerlerini ayarlamak amacıyla yeni bir algoritma olan deniz yırtıcıları algoritması önerilmiştir. Önerilen algoritma ile terminal geriliminin maksimum yüzde aşımı, yerleşme süresi, yükselme süresi ve kararlı durum hatasını en aza indirmek ve optimal oransal integral türev denetleyicisi ile otomatik gerilim regülatör sisteminin geçici durum yanıtının iyileştirilmesi amaçlanmıştır. Denetleyici parametrelerini ayarlamak için karesel hatanın integrali, ağırlıklı karesel hatanın integrali, zaman’ın karesel integrali ve Zwe-Lee Gaing amaç fonksiyonları kullanılmıştır. Deniz yırtıcıları algoritma tabanlı oransal-integral-türev denetleyicinin performansı, literatürde önerilen çeşitli amaç fonksiyonları kullanılarak gerçekleştirilen farklı meta-sezgisel algoritmalar tarafından uyarlanmış oransal integral türev denetleyicileri ile karşılaştırmalı analizler yapılmıştır. Bu analizler geçici tepki analizi, kök konum analizi ve sağlamlık gibi analiz yöntemleri ile gerçekleştirilmiştir. Simülasyon sonuçları, deniz yırtıcıları algoritmasıyla ayarlanan oransal integral türev kontrollü otomatik gerilim regülatör sisteminin yerleşme süresi, tepe aşımı ve kararlılık açısından daha iyi performans gösterdiğini kanıtlamıştır.

Performance Analysis of Marine Predators Algorithm for Automatic Voltage Regulator System

n this study, the emerging, novel marine predators algorithm is proposed to adjust the proportional–integral– derivative controller of the automatic voltage regulator system. With the proposed algorithm, this study aimed to minimize the maximum percent excess of the terminal voltage, settling time, rise time, and steady-state error and improve the transient response of the automatic voltage regulator system with an optimal proportional–integral– derivative controller. The integral of squared error, integral of weighted squared error, squared integral of time, and Zwe-Lee Gaing objective functions were used to set the controller parameters. The performance of the proportional–integral–derivative controller based on the marine predators algorithm was compared with those of the proportional–integral–derivative controllers adapted by different metaheuristic algorithms using various objective functions suggested in the literature. These analyses were conducted using analysis methods such as transient response, root locus, and robustness. The simulation results show better performance in terms of the settling time, over-peak, and stability of the proportional–integral–derivative-controlled automatic voltage regulator system tuned with the marine predators algorithm.

___

  • Abdel-Basset, M., El-Shahat, D., Chakrabortty, R.K. & Ryan, M. (2021). Parameter estimation of photovoltaic models using an improved marine predators algorithm, Energy Conversion and Management, 227, 113491. https,//doi.org/10.1016/j.enconman.2020.113491.
  • Ayas, M.S. (2019). Design of an optimized fractional high-order differential feedback controller for an AVR system. Electrical Engineering, 101,1221–1233. https,//doi.org/10.1007/s00202-019-00842-5.
  • Bhookya, J., Jatoth, R. K. (2019). Optimal FOPID/PID controller parameters tuning for the AVR system based on sine–cosine -algorithm. Evolutionary Intelligence, 12,725–733.https,//doi.org/10.1007/s12065-019-00290-x.
  • Bhullar, A.K., Kaur, R. & Sondhi, S. (2020). Enhanced crow search algorithm for AVR optimization. Soft Computing, 24,11957–11987.https,//doi. org/10.1007/s00500-019-04640-w.
  • Bingul, Z., & Karahan, O. (2018). A novel performance criterion approach to optimumdesign of PID controller using cuckoo search algorithm for AVR system. Journal of the Franklin Institute, 355, 5534–5559. https,//doi.org/10.1016/j.jfranklin.2018.05.056
  • Blondin, M., Sanchis, J., Sicard P. & Herrero J.M. (2018). New optimal controller tuning method for an AVR system using a simplifed Ant Colony Optimization with a new constrained Nelder–Mead algorithm. Appl Soft Comput ,62,216-229. https,//doi.org/10.1016/j.asoc.2017.10.007
  • Blondin, M.J., Sanchis, J. Sicard, P. & Herrero, J.M. (2018). New optimal controller tuning method for an AVR system using a simplified Ant Colony Optimization with a new constrained Nelder–Mead algorithm. Applied Soft Computing, 62, 216–229. ttps,//doi.org/10.1016/j.asoc.2017.10.007.
  • Çelik, E. (2018). Incorporation of stochastic fractal search algorithm into efficient design of PID controller for an automatic voltage regulator system. Neural Computing and Applications, 30,1991–2002. https,//doi.org/10.1007/s00521-017-3335-7.
  • Chen, X., Qi, X., Wang Z., Cui, C., Wu, B. & Yang Y. (2021) .Fault diagnosis of rolling bearing using marine predators algorithm-based support vector machine and topology learning and out-of-sample embedding. Measurement, 176,109116. https,//doi.org/10.1016/j.measurement.2021.109116.
  • Ekinci, S. & Hekimoğlu, B. (2019). Improved Kidney-Inspired Algorithm Approach for Tuning of PID Controller in AVR System. IEEE Access, 7, 2169- 3536. http,//dx.doi.org/10.1109/ACCESS.2019.2906980.
  • Faramarzi, A., Heidarinejad, M., Mirjalili, S. & Gandomi, A. H. (2020). Marine predator algorithm, a nature-inspired metaheuristic. Int J Expert Syst Appl, 52, 113377. https,//doi.org/10.1016/j.eswa.2020.11337.
  • Faramarzi, A., Heidarinejad, M., Mirjalili, S. & Gandomi, A. H. (2020). Marine Predators Algorithm, A nature-inspired metaheuristic. Expert Systems With Applications, 152, 113377. https,//doi.org/10.1016/j.eswa.2020.113377.
  • Gaing, L. (2004). A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Trans. Energy Convers., 19(2),384– 391. https,//doi.org/10.1109/TEC.2003.821821
  • Gozde, H., & Taplamacioglu, M.C. (2011). Comparative performance analysis of artificial bee colony algorithm for automatic voltage regülatör (AVR) system. Journal of the Franklin Institute, 348, 1927–1946. http,//dx.doi.org/10.1016/j.jfranklin.2011.05.012
  • Guvenc, U., Yiğit, T., Işık, A.H. & Akkaya İ. (2016). Performance analysis of biogeography-based optimization for automatic voltage regulator system. Turk J Elec Eng & Comp Sci, 24, 1150 -1162. http,//dx.doi.org/10.3906/elk-1311-11.
  • Hekimoğlu, B. & Ekinci, S. (2018). Grasshopper Optimization Algorithm for Automatic Voltage Regulator System. 5th International Conference on Electrical and Electronics Engineering, 152-156.
  • Hekimoğlu, B. (2019). Sine-cosine algorithm-based optimization for automatic voltage regulator system. Transactions of the Institute of Measurement and Control, 41(6), 1761–1771. http,//dx.doi.org/10.1177/0142331218811453.
  • Li, Y., Ang, K.H. & Chong, G.C.Y. (2006). PID control system analysis and design.IEEE Control Systems Magazine, 26(1),32-41. https,//doi.org/10.1109/ TCST.2005.847331.
  • Micev, M., Calasan, M., Ali, Z.M., Hasanien, H.M. & Aleem, S.H.E. A. (2021). Optimal design of automatic voltage regulation controller using hybrid simulated annealing – Manta ray foraging optimization algorithm. Ain Shams Engineering Journal, 12, 641–657. https,//doi.org/10.1016/j.asej.2020.07.010.
  • Mohanty, P.K., Sahu, B.K. & Sidhartha Panda (2014) Tuning and Assessment of Proportional–Integral–Derivative Controller for an Automatic Voltage Regulator System Employing Local Unimodal Sampling Algorithm. Electric Power Components and Systems, 42(9), 959-969. http,//dx.doi.org/10. 1080/15325008.2014.903546
  • Panda, S., Sahub, B.K. & Mohanty, P.K. (2012). Design and performance analysis of PID controller for an automatic voltage regulator system using simplified particle swarm optimization. Journal of the Franklin Institute, 349, 2609–2625. http,//dx.doi.org/10.1016/j.jfranklin.2012.06.008
  • Sahib, M.A. (2015). A novel optimal PID plus second order derivative controller for AVR system. Engineering Science and Technology an International Journal, 18(2), 194-206. https,//doi.org/10.1016/j.jestch.2014.11.006.
  • Yousri, D., Hasanien, H.M. & Fathy, A. (2021). Parameters identification of solid oxide fuel cell for static and dynamic simulation using comprehensive learning dynamic multi-swarm marine predators algorithm. Energy Conversion and Management, 228, 113692. https,//doi.org/10.1016/j. enconman.2020.113692.
Acta Infologica-Cover
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2017
  • Yayıncı: İstanbul Üniversitesi
Academic Researches Index - FooterLogo