Türkiye’de Hastane Kanalizasyonundan İzole Edilen Aeromonas hydrophila ve Pseudomonas aeruginosa Suşlarının Sefalosporin ve Ağır Metal Dirençliliğinin Araştırılması

Bu çalışmada Türkiye’de bir üniversite hastane kanalizasyonundan 89 adet Aeromonas hydrophila ve 88 adet Pseudomonas aeruginosa suşu izole edilmiştir. Bu bakteriyal izolatların dört kuşağa ait 11 farklı sınıf sefalosporin antibiyotiğine ve 4 farklı ağır metale karşı dirençliliği araştırılmıştır. Kullanılan ağır metaller kadmiyum, kurşun, manganez ve çinkodur. A. hydrophila izolatları arasında sefazoline (%98,9), sefaklora (%98,9) ve sefprozile (%97,8) karşı yüksek insidansta dirençlilik bulunmuştur. Sefoksitin (%30,3), sefepim (%30,3) ve saftazidime (%31,4), karşı dirençlilik daha düşük bulunmuştur. P. aeruginosa izolatları arasında sefazoline, sefuroksime, sefaklora ve sefoksitine dirençlilik (%100) olarak bulunmuştur. Ayrıca, sefprozile (%98,7), sefiksime (%96,6) ve seftizoksime (%85,2), oranında karşı dirençlilik tespit edilmiştir. Hiçbir P. aeruginosa izolatı seftazidim, sefepim ve sefpiroma karşı dirençlilik göstermemiştir. A. hydrophila izolatları arasında çoklu antibiyotik dirençliliği (ÇAD) indeksi 0,27 den 1,0’e kadar ve P. aeruginosa ÇAD indeksi 0,46’dan 0,72 aralığında değişiklik göstermiştir. Tüm A. hydrophila ve P. aeruginosa izolatları kadmiyuma karşı dirençlilik göstermiştir. A. hydrophila ve P. aeruginosa izolatları kurşuna karşı sırasıyla %6,7 ve %2,2 oranında düşük dirençlilik göstermişlerdir. Sonuçlar her iki türün de hastane kanalizasyonundan kolaylıkla izole edilebildiğini ve bu türlerin farklı kuşak sefalosporinlere ve ağır metallere karşı dirençlilik kazandığını göstermektedir.

Investigation of Cephalosporin and Heavy Metal Resistance of Aeromonas hydrophila and Pseudomonas aeruginosa Strains Isolated from Hospital Sewage in Türkiye

In this study, 89 strains of Aeromonas hydrophila and 88 strains of Pseudomonas aeruginosa were isolated from the sewage of a university hospital in Turkey. The resistance of these bacterial isolates to 11 different cephalosporin classes’ antibiotics belonging to four generations and to 4 heavy metals was investigated. Cadmium, lead, manganese, and zinc are the heavy metals employed. There was a high incidence of resistance to cefazolin (98.9%), cefaclor (98.9%), and cefprozil (97.8%) among the A. hydrophila isolates. Lower resistance to cefoxitin (30.3%), cefepime (30.3%), and ceftazidime (31.4%) were found. Cefazolin, cefuroxime, cefaclor, and cefoxitin resistance was found to be (100%) among the P. aeruginosa isolates. Moreover, resistance rates to cefprozil (98.9%), cefixime (96.6%), and ceftizoxime (85.2%) were detected. No isolates of P. aeruginosa were showed resistance to ceftazidime, cefepime and cefpirome. Multiple antibiotic resistance (MAR) indexes ranged from 0.27 to 1.0 among A. hydrophila isolates and from 0.46 to 0.72 among P. aeruginosa isolates. All of the A. hydrophila and P. aeruginosa isolates showed resistance to cadmium. A. hydrophila and P. aeruginosa isolates showed low resistance to lead of 6.7% and 2.2% respectively. Results indicate that both species are easily recovered in hospital sewage and these species gained resistance to different generations of cephalosporins and heavy metals.

___

  • Altuğ, G., & Balkis, N. (2009). Levels of some toxic elements and frequency of bacterial heavy metal resistance in sediment and seawater. Environmental Monitoring and Assessment, 149, 61–69. https://doi.org/10.1007/s10661-008-0183-z
  • Ansari, M. I., & Malik, A. (2007). Biosorption of nickel and cadmium by metal resistant bacterial isolates from agricultural soil irrigated with industrial wastewater. Bioresource Technology, 98(16), 3149–3153. https://doi.org/10.1016/j.biortech.2006.10.008
  • APHA Microbial Examination. (1992). In Standard Methods for the Examination of Water and Wastewater, 18th edn. American Public Health Association.
  • Baker-Austin, C., Wright, M. S., Stepanauskas, R., & McArthur, J. V. (2006). Co-selection of antibiotic and metal resistance. Trends in Microbiology, 14(4), 176–182. https://doi.org/10.1016/j.tim.2006.02.006
  • Balakrishna, K., Rath, A., Yerabham, P., Guruge, K.S., & Subedi, B. (2017). A review of the occurrence of pharmaceuticals and personal care products in Indian water bodies. Ecotoxicology and Environmental Safety, 137, 113-120. https://doi.org/10.1016/j.ecoenv.2016.11.014
  • Ben-Mahrez, K., Rejiba, S., Belhadj, C., & Belhadj, O. (1999). -lactamase-mediated resistance to extended spectrum cephalosporins among clinical isolates of Pseudomonas aeruginosa. Research in Microbiology, 150(6), 403–406. https://doi.org/10.1016/S0923-2508(99)80075-8
  • Blandino, G., Marchese, A., Ardito, F., Fadda, G., Fontana, R., Lo Cascio, G., Marchettie, F. Schitob G. C. & Nicolettia, G. (2004). Antimicrobial susceptibility profiles of Pseudomonas aeruginosa and Staphylococcus aureus isolated in Italy from patients with hospital-acquired infections. International Journal of Antimicrobial Agents, 24(5), 515–518. https://doi.org/10.1016/j.ijantimicag.2003.10.015
  • Choi, S., Chu, W., Brown, J., Becker, S. J., Harwood, V. J., & Jiang, S. C. (2003). Application of enterococci antibiotic resistance patterns for contamination source identification at Huntington Beach. California. Marine Pollution Bulletin, 46(6), 748–755. https://doi.org/10.1016/S0025-326X(03)00046-8
  • Cross, A. S. (1985). Evolving epidemiology of Pseudomonas aeruginosa infections. European Journal of Clinical Microbiology, 4, 156–159. https://doi.org/10.1007/BF02013589
  • Fair, R. J., & Tor, Y. (2014). Antibiotics and bacterial resistance in the 21st century. Perspectives in Medicinal Chemistry, 6, 25–64. https://doi.org/10.4137/PMC.S14459
  • Filik, N., Onem, E., & Kubilay, A. (2021). Antibiotic Resistance Profiles of Aeromonas hydrophila Strains. Acta Aquatica Turcica, 17(2), 202–213. https://doi.org/10.22392/actaquatr.792224
  • Gadd, G. M. (1992). Microbial control of heavy metal pollution. In J. C., Fry, G. M., Gadd, R. A., Herbert, C. W., Jones, & I. A., Watson-Craik (Eds.), Microbial Control of Pollution (pp. 59–88). Cambridge Press.
  • Gautam, A. K, Kumar, S., & Sabumon, P. C. (2007). Preliminary study of physico-chemical treatment options for hospital wastewater. Journal of Environmental Management, 83(3), 298–306. https://doi.org/10.1016/j.jenvman.2006.03.009
  • Gutierrez-Sanchez, P., Rodriguez- Liorente, D., Navarro, P., Agueda, V.I., Alvarez-Torrolas, S., Garcia, J., & Larriba, M. (2022). Extraction of antibiotics identified in the EU Watch List 2020 from hospital wastewater using hydrophobic eutectic solvents and terpenoids. Seperation and Purification Technology, 282, 1-12. https://doi.org/10.1016/j.seppur.2021.120117
  • Hassani, L., Imzilnü B., & Gauthierü M. J. (1992). Seasonal incidence of and antibiotic resistance among Aeromonas species isolated from domestic wastewater before and after treatment in stabilization ponds. Microbial Ecology, 23, 227–237. https://doi.org/10.1007/BF00164098
  • Jana, S., & Bhattacharya, D. N. (1988). Effect of heavy metals on growth population of a fecal coliform bacterium Escherichia coli in aquatic environment. Water Air and Soil Pollution, 38, 251–254. https://doi.org/10.1007/BF00280756
  • Janda, J. M., & Abbott, S. L. (1998). Evolving concepts regarding the genus Aeromonas: An expanding panorama of species, disease presentations, and unanswered questions. Clinical Infectious Diseases, 27(2), 332–344. https://doi.org/10.1086/514652
  • Kato, I., Fujimoto, F., Higurashi, Y., Yamaguchi, R., Takayama, K., Suzuki, M., Okugawa, S., Okazaki, M., & Moriya, K. (2015). Antibiotic susceptibilities of Pseudomonas aeruginosa isolated from blood samples and antibiotic utilization in a university hospital in Japan. Infectious Disease and Therapy, 4, 213–218. https://doi.org/10.1007/s40121-015-0066-x
  • Kerr, K. G., & Snelling, A. M. (2009). Pseudomonas aeruginosa: a formidable and ever-present adversary, The Journal of Hospital Infection, 73(4), 338–344. https://doi.org/10.1016/j.jhin.2009.04.020
  • Ko, W. C., Lee, H. C., Chuang, Y. C., Liu, C. C., & Wu, J. J. (2000). Clinical features and therapeutic implications of 104 episodes of monomicrobial Aeromonas bacteremia, Journal of Infection, 40(3), 267–273. https://doi.org/10.1053/jinf.2000.0654
  • Krumperman, P. H. (1983). Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Applied and Environmental Microbiology, 46(1), 165–170. https://doi.org/10.1128/aem.46.1.165-170.1983
  • Kueh, C. S. W., Kutarski, P., & Brunton M. (1992). Contaminated marine wounds-the risk of acquiring acute bacterial infection from marine recreational beaches. Journal of Applied Bacteriology, 73(5), 412–420. https://doi.org/10.1111/j.1365-2672.1992.tb04997.x
  • Li, F., Wang, W., Zhu, Z., Chen, A., Du, P., Wang, R., Chen, H., Hu, Y., Li, J., Kan, B. & Wang, D. (2015). Distribution, virulence-associated genes and antimicrobial resistance of Aeromonas isolates from diarrheal patients and water. China, Journal of Infection, 70(6), 600–608. https://doi.org/10.1016/j.jinf.2014.11.004
  • Liscio, J. L., Mahoney, M. V., & Hirsch, E. B. (2015). Ceftolozane/tazobactam and ceftazidime/avibactam: two novel beta-lactam/beta-lactamase inhibitör combination agents for the treatment of resistant gram-negative bacterial infections. International Journal of Antimicrobial Agents, 46(3), 266–71. https://doi.org/10.1016/j.ijantimicag.2015.05.003
  • Magalhães, M. J. T. L., Pontes, G., Serra, T., Balieiro, A., Castro, D., Pieri, F. A., Crainey, J. L., Nogueira, P. A., & Orlandi, P. P. (2016). Multidrug resistant Pseudomonas aeruginosa survey in a stream receiving effluents from ineffective wastewater hospital plants. BMC Microbiology, 16, 193–200. https://doi.org/10.1186/s12866-016-0798-0
  • Malik, A., & Jaiswal, R. (2000). Metal resistance in Pseudomonas strains isolated from soil treated with industrial wastewater. World Journal of Microbiology and Biotechnology, 16, 177–182. https://doi.org/10.1023/A:1008905902282
  • Masuda, N., & Ohya, S. (1992). Cross-resistance to meropenem, cephems and quinolones in Pseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy, 36(9), 1847–1851. https://doi.org/10.1128/aac.36.9.1847
  • Matyar, F. (2007). Distribution and antimicrobial multiresistance in Gram-negative bacteria isolated from Turkish sea bass (Dicentrarchus labrax L., 1781) farm. Annals of Microbiology, 57, 35–38. https://doi.org/10.1007/BF03175047
  • Matyar, F., Kaya, A., & Dincer, S. (2007). Distribution and antibacterial drug resistance of Aeromonas spp. from fresh and brackish waters in Southern Turkey. Annals of Microbiology, 57, 443–447. https://doi.org/10.1007/BF03175087
  • Matyar, F., Akkan, T., Ucak, Y., & Eraslan, B. (2010). Aeromonas and Pseudomonas: antibiotic and heavy metal resistance species from Iskenderun Bay, Turkey (northeast Mediterranean Sea). Environmental Monitoring and Assessment, 167, 309–320. https://doi.org/10.1007/s10661-009-1051-1
  • Matyar, F., (2012). Antibiotic and heavy metal resistance in bacteria isolated from the Eastern Mediterranean Sea coast. Bulletin of Environmental Contamination and Toxicology, 89, 551–556. https://doi.org/10.1007/s00128-012-0726-4
  • McCarthy, B., Apori, S.O., Giltrap, M., Bhat, A., Curtin, J., & Tian, F. (2021). Hospital effluents and wastewater treatment plants: A Source of oxytetracycline and antimicrobial-resistant bacteria in seafood. Sustainability, 13, 1-16. https://doi.org/10.3390/su132413967
  • Meyer, E., Schwab, F., Schroeren-Boersch, B., & Gastmeier, P. (2010). Dramatic increase of third-generation cephalosporin-resistant E. coli in a German intensive care units: secular trends in antibiotic drug use and bacterial resistance, 2001 to 2008. Critical Care, 14, 113. https://doi.org/10.1186/cc9062
  • Micek, S. T., Wunderink, R. G., Kollef, M. H., Chen, C., Rello, J., Chastre, J., Antonelli, M., Welte, T., Clair, B., Ostermann, H., Calbo, E., Torres, A., Menichetti, F., Schramm, G. E., & Menon, V. (2015). An international multicenter retrospective study of Pseudomonas aeruginosa nosocomial pneumonia: impact of multidrug resistance, Critical Care, 19, 219. https://doi.org/10.1186/s13054-015-0926-5
  • Mishra, K., Sharma, A., & Ayub S. (2016). A study: biomedical waste management in India, IOSR. Journal of Environmental Science Toxicology and Food Technology, 10(5) 64-67. https://doi.org/10.9790/2402-1005026467
  • NCCLS - National Committee for Clinical Laboratory Standards. (1997) Approved Standards M2-A6. Performance Standards for Antimicrobial Disk Susceptibility Tests, 6th edn. NCCLS.
  • Picard, B., & Goulled, P. (1987). Seasonal prevalence of nosocomial Aeromonas hydrophila infection related to aeromonas in hospital water. The Journal of Hospital Infection, 10(2), 152–155. https://doi.org/10.1016/0195-6701(87)90141-1
  • Piotrowska, M., & Popowska, M. (2014). The prevalence of antibiotic resistance genes among Aeromonas species in aquatic environments. Annals of Microbiology, 64, 921–934. https://doi.org/10.1007/s13213-014-0911-2
  • Radu, S., Ahmad, N., Ling, F. H., & Reezal, A. (2003). Prevalence and resistance to antibiotics for Aeromonas species from retail fish in Malaysia. International Journal of Food Microbiology, 81(3), 261–266. https://doi.org/10.1016/s0168-1605(02)00228-3
  • Rahman, M., Huys, G., Kühn, I., & Möllby, R. (2009). Prevalence and transmission of antimicrobial resistance among Aeromonas populations from a duckweed aquaculture based hospital sewage water recycling system in Bangladesh. Antonie van Leeuwenhoek, 96, 313–321. https://doi.org/10.1007/s10482-009-9348-1
  • Rhodes, G., Huys, G., Swings, J., McGann, P., Hiney, M., Smith, P., & Pickup, R. W. (2000). Distribution of oxytetracycline resistance plasmids between aeromonads in hospital and aquaculture environments: implication of Tn1721 in dissemination of the tetracycline resistance determinant tet A. Applied and Environmental Microbiology, 66(9), 3883–3890. https://doi.org/10.1128/AEM.66.9.3883-3890.2000
  • Song, M., Tang, M., Ding, Y., Wu, Z., Xiang, C., Yang, K., Zhang, Z., Li, B., Deng, Z., & Liu, J. (2018). Application of protein typing in molecular epidemiological investigation of nosocomial infection outbreak of aminoglycoside-resistant Pseudomonas aeruginosa. Environmental Science and Pollution Research International, 25, 22437–22445. https://doi.org/10.1007/s11356-017-0960-8
  • Tennstedt, T., Szczepanowski, R., Braun, S., Puhler, A., & Schluter, A., (2003). Occurrence of integron-associated resistance gene cassettes located on antibiotic resistance plasmids isolated from a wastewater treatment plant. FEMS Microbiology Ecology, 45(3), 239–252. https://doi.org/10.1016/S0168-6496(03)00164-8
  • Wang, X., An, J., Li, J., & Ye, N. (2017). A capillary coated with a metal-organic framework for the capillary electrochromatography determination of cephalosporins. Microchimica Acta, 184, 1345–1351. https://doi.org/10.1007/s00604-017-2131-5
  • Watanabe, K., Iyobe, S., Inoue, M., & Mitsuhashi, S. (1991). Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 35(1), 147–151. https://doi.org/10.1128/AAC.35.1.147
  • Witte, W. (1998). Medical consequences of antibiotic use in agriculture. Science, 279(5353), 996–997. https://doi.org/10.1126/science.279.5353.996
  • Yobe, S., Yamada, H., & Minami, S. (1996). Insertion of a carbapenemase cassette into an integron of a Pseudomonas aeruginosa plasmid. Journal of Antimicrobial Chemotherapy, 38(6), 1114–1115. https://doi.org/10.1093/jac/38.6.1114