Genetik Absans Epilepsili Sıçanların GAERS Hipokampusunda Glukoz–6-Fosfataz’ın Histokimyasal Olarak Dağılımı

Epilepsi tekrarlayan nöbetlerin varlığı ile belirgin ve sıklıkla geçici bilinç kayıplarına neden olan bir hastalıktır. Absans epilepsi modeli için kullanılan deney hayvanları olarak bilinen Genetik Absans Epilepsili Sıçanlar GAERS genetik olarak belirlenmiş nöbetler geçirmekte olup, 1980’li yıllardan itibaren insan absans epilepsi modelini teşkil edecek şekilde deneysel çalışmalarda kullanılmaya başlanmıştır. Bu çalışmada, absans epilepsi modeli için kullanılan GAERS sıçanlarda beyinde karbonhidrat metabolizmasında anahtar bir enzim olan glukoz-6-fosfataz aktivitesindeki değişiklik histokimyasal metotlarla araştırılmış ve hipokampusdaki glukoz metabolizması – glukoz-6-fosfataz – epileptogenez ilişkileri kontrol grubunu oluşturan Wistar albino sıçanlarla kıyaslanarak belirlenmeye çalışılmıştır. Kontrol gruplarında, epileptik olmayan Wistar albino Rattus norvecigus 4 aylık n: 4 , erkek, 220–240 gr ağırlığında sıçanlar kullanıldı. Deney gruplarında ise 6 aylık n: 4 , 250–300 gr ağırlığında, EEG’de absans nöbetler geçirdikleri belirlenmiş olan GAERS sıçanlar kullanıldı. Her iki deney grubunda hipokampusun Dentat Girus DG ve Cornu Ammonis CA bölgelerine glukoz–6-fosfataz histokimyası uygulandı. Kontrol grubu sıçanlara kıyasla GAERS sıçanlarda DG ve CA bölgelerinde glukoz–6-fosfataz reaktivitesinde bir artış olduğu enzim histokimyası uygulaması sonrası saptandı. Sonuç olarak, generalize konvulzif atakların glukoz kullanımını arttırdığının bilinmesinden yola çıkarak epilepsi vakalarında merkezi olarak verilecek glukoz–6- fosfatazın tedaviye yönelik olarak kullanımını destekler deneysel çalışmaların da ileride yapılabileceğini düşünmekteyiz

Histochemical Distribution of Glucose -6- Phosphatase In Hippocampus of Genetic Absance Epileptic Rats Gaers

Epilepsy is a disease with repeated seizures and usually caused transient ischemic attacks. Genetic Absence Epilepsy Rats from Strasbourg GAERS were recently used as a model for absence epilepsy. It has been used in experimental research in order to form the human absence epilepsy model since 1980. The aim of this study is to reveal changes in glucose–6–phosphatase activity which is the key enzyme of carbohydrate mechanism, at light microscopical levels by means of histochemical methods in GAERS’s brain. The correlation between the glucose metabolism and epileptogenesis has also been tried to be evaluated in this study. In control groups, non-epileptic Wistar albino, 4-months old, male, 220–240 gr rats were used n: 4 . Six-months old, 250–300 gr GAERS rats with previously determined absence seizures constituted the experimental group n: 4 Glucose–6-phosphatase histochemistry were examined within hippocampal Dentate Gyrus DG and Cornu Ammonis CA regions. Glucose–6–phosphatase reactivity were determined to be increased in DG and CA1 region in GAERS groups compared to the control group. As a result, based on the knowing generalized convulsive seizures increases the glucose utilization, glucose–6–phosphatase may be given in experimental studies, in order to treat with glucose–6–phosphatase in the cases of epilepsy in the future

___

Nehlig A, Vergnes M, Waydelich R, Hirsh E, Charbonne R, Marescaux C, Seylaz J. Absence seizures induce a decrease in cerebral blood fl ow: human and animal data. J Cereb Blood Flow Metab 1996;16:147–155.

Şirvancı S, Meshul C, Onat F, Şan T. Immunocytochemical analysis of glutamate and GABA in hippocampus of genetic absence epilepsy rats (GAERS). Brain Res 2003;988: 180–188.

Nehlig A, Vergnes M, Boyet S, Marescaux C. Local cerebral glucose utilization in adult and immature GAERS. Epilepsy Res 1998; 32:206–212.

Bancroft JD, Gamble M. Theory and Practice of Histological Techniques Fifth edition. Elsevier, 2002;596–602.

Armand V, Hoff man P, Vergnes M, Heinemann U. Epileptiform activity induced by 4-aminopyridine in the entorhinal cortex hippocampal slices of rats with genetically determined absence epilepsy (GAERS). Brain Res 1999;841:62–69.

Marescaux C, Micheletti G, Vergnes M, Depaulis A, Rumbach L, Ve Warter JMA Model of chronic spontaneous petit-mal-like seizures in the rat comparison with pentilentetrazol-induced seizures. Epilepsia 1984;25:326–331.

Maher F, Vannucci SJ, Sımpson IA. Glucose Transporter protein in brain. FASEB J 1994;8:1003–1011

Pertsch M, Duncan GE, Stumpf WE, Pilgrim CA. Histochemical study of the regional distribution in the rat brain of enzimatik activity hydrolyzing glucose and 2-deoxyglucose-6-phohsphate. Histochemistry 1988;88(3–6):257–262.

Plewka A, Kaminski M, Plewka D, Nowaczyk. Glucose-6-phosphatase and age: biochemical and histochemical studies. Mech Ageing Dev 2000;113: 49–59.

Bolkent Ş. The eff ects of Cyclophosphamide on the kidney tissue of Swiss black C 57. İstanbul Üniv. Fen Fak. Biyoloji Der, 1994;57:113-140.

Plaschke K, Muller D, Hoyer S. Eff ect of adrenalectomy and corticosterone substituon on glucose and glycogen metabolism in rat brain, J Neural Transm 1996;103(1–2):89–100.

Nadler, JV, Perry BW, Cotman CW. Intraventricular kainic acid preferentially destroys hippocampal pyramidal cells. Nature 1978;271:676–677.

Nordlie RC, ve Arıon WJ. Liver microsomal glukoz-6-phosphotransferase, J. Biol. Chem 1965;241(8):2155:2164.

Dufour F, Koning E, Nehlig A. Basal levels of metabolic activity are elevated in Genetic Absence Epilepsy Rats from Starsbourg (GAERS): measurement of regional activity of cytochrome oxidase and lactate dehydrogenase by histochemistry. Exp Neurol 2003;182:346–352.

Darbin O, Risso JJ, Carre E, Lonjon M, Naritoku D. Metabolic changes in rat striatum following convulsive seizures. Brain Res 2005;1050:124–129.

Fowler J, Volkow N, Cilento R, Wang GJ, Felder C, Logan J. Comparison of brain glucose metabolism and monoamine oxidase B (MAO B) in traumatic brain injury. Clin Positron Imaging 1999;2:71–79.