Сurrent state of heat-accumulating materials in the construction industry

The article discusses today's achievements and shortcomings in the industry of energy-saving materials. Domestic and foreign problems of developing energy-optimizing heat-accumulating materials used in modern heat supply systems for residential and public buildings and structures are considered. The efficiency of the use of heat-accumulating materials based on paraffin in energyefficient multi-storey building walls and panels is shown.

Сurrent state of heat-accumulating materials in the construction industry

The article discusses today's achievements and shortcomings in the industry of energy-saving materials. Domestic and foreign problems of developing energy-optimizing heat-accumulating materials used in modern heat supply systems for residential and public buildings and structures are considered. The efficiency of the use of heat-accumulating materials based on paraffin in energyefficient multi-storey building walls and panels is shown.

___

  • 1. Cheng, Fei; Wen, Ruilong; Huang, Zhaohui; et al. Preparation and analysis of lightweight wall material with expanded graphite (EG)/paraffin composites for solar energy storage // Applied Thermal Engineering, 2017. - Volume:120. - Pages: 107-114.
  • 2. Cui, Yaping; Xie, Jingchao; Liu, Jiaping; et al. A review on phase change material application in building // Advances In Mechanical Engineering, 2017. - Volume: 9 (6). DOI: 10,1177 / 1687814017700828
  • 3. Wahid, Mazlan Abdul; Hosseini, Seyed Ehsan; Hussen, Hasanen M.; et al.An overview of phase change materials for construction architecture thermal management in hot and dry climate region // Applied Thermal Engineering, 2017. - Volume: 112. - 1240-1259 p.
  • 4. Alexeev V.A., Shishanov A.V., Chukin V.F., etс. Heat storages based on shape-stable phase-transitional material //Applied Thermal Engineering. - Volume: 28(4). - 261-265 p.
  • 5. Serrano, Susana; Barreneche, Camila; Fernandez, A. Ines; et al. Composite gypsum containing fatty-ester PCM to be used as constructive system: Thermophysical characterization of two shape-stabilized formulations //Energy And Buildings, 2015. - Volume: 86. -190-193 p.
  • 6. Серов С.Ф., Дегтярев Н.С. системы аккумуляции теплоты в системах теплоснабжения домов //Промышленное и гражданское строительство. 2010.№10. – С36-39.
  • 7. Снежкин Ю.Ф., Михайлик В.А., Коринчевская Т.В. и др. Удельная теплоемкость и теплопроводность теплоаккумулирующих материалов на основе парафина, буроугольного и полиэтиленового восков // Problemele Energeticii Regionale. TermoEnergetica, 2014. – Vol. 2(25). -38-46 p.
  • 8. Glucc Bernd. Dynamisches Raummodell zur warmeteechniscen und warmerhysiologischen Bewwrtung. Bericht der RUD. OTTO MEYER – Umwel-Stiftung. Hamburg. 2004/05. 231-233 c.
  • 9. Moulahi, Chadia; Trigui, Abdelwaheb; Karkri, Mustapha; et al. Thermal performance of latent heat storage: Phase change material melting in horizontal tube applied to lightweight building envelopes // Composite Structures, 2016. - Volume: 149. -69-78 p.
  • 10. Амерханов РА. Оптимизация сельскохозяйственных энергетических установок с использованием возобновляемых видов энергии. - М.: Колосс, 2003. 532 с.
  • 11. Теплоизоляционные и акустические материалы. Учебное пособие. Шымкент, ЮКГУ, 2014. 96 с.
  • 12. Babaev, B. D. Principles of Heat Accumulation and Heat-Accumulating Materials in Use // High Temperature, 2014. - Volume: 52(5). - Pages: 736-751.
  • 13. Barreneche, Camila; de Gracia, Alvaro; Serrano, Susana; et al. Comparison of three different devices available in Spain to test thermal properties of building materials including phase change materials // Applied Energy, 2013. - Volume:109(SI). - 421-427 p.