MESLEKİ KARAR ENVANTERİ FAKTÖR YAPISINA AİT FARKLI ÖLÇME MODELLERİNİN DOĞRULAYICI FAKTÖR ANALİZİ İLE İNCELENMESİ

Öz Bu araştırmanın amacı, lise öğrencilerinin mesleki kararsızlık düzeylerini ölçmek için Çakır (2004) tarafında geliştirilen Mesleki Karar Envanterinin faktör yapısını farklı modeller çerçevesinde doğrulayıcı faktör analiziyle incelemektir. Mesleki Karar Envanterinin ön çalışmasında Çakır (2004) tarafından açımlayıcı faktör analizi ile envanterin faktör çözümlenmesi yapılmıştır. Envanterin geliştirilme aşamasında 5 faktör toplam 30 madde içeren formu ortaya konulmuştur. Bu araştırmada ise ön çalışmada ortaya konulan yapı tek boyut, ilişkili birinci düzey, ilişkisiz birinci düzey, ikinci düzey ve iki-faktör model olmak üzere 5 farklı model çerçevesinde doğrulayıcı faktör analizi ile test edilmiştir. Yapılan doğrulayıcı faktör analizlerinde, Mesleki Karar Envanterinin ikinci düzey yapısının bir model olarak doğrulandığı sonucuna ulaşılmıştır. Bu doğrultuda İçsel Çatışma, Kendini Yeterince Tanımama, Meslek ve Alan Bilgisi Eksikliği, Meslek Seçiminde Akılcı Olmayan İnançlar ve Dışsal Çatışmalar değişkenlerinin Mesleki Karar yapısını oluşturduğu söylenilebilir. Ayrıca genel yapı olan Mesleki Karar üzerinde en çok etkiye sahip değişkenin Meslek ve Alan Bilgisi Eksikliği olduğu belirlenmiştir. Envanter için hesaplanan ortalama açıklanan varyans ve yapı güvenirlik katsayılarının da yeterli düzeydedir. 

Kaynakça

Alpar, R. (2017). Uygulamalı çok değişkenli istatistiksel yöntemler. Ankara: Detay Yayıncılık.

Beaujean, A.A., Parkin, J., & Parker, S. (2014). Comparing Cattell-Horn-Carroll factor models: Differences between bifactor and higher order factor models in predicting language achievement. Psychological. Assessment, 26(3), 789–805.

Benson, N., Hulac, D.M., & Bernstein, J.D. (2013). An independent confirmatory factor analysis of the Wechsler Intelligence Scale for Children—Fourth Edition (WISC-IV) Integrated: What do the process approach subtests measure? Psychological Assessment, 25(3), 692–705.

Bentler, P. M. & Chou, C. P. (1987). Practical issues in structural equation modeling. Sociological Methods and Research, 16(1), 78–117.

Boomsma, A., & Hoogland, J. J. (2001). The robustness of LISREL modeling revisited. In R. Cudeck, S. du Toit, & D. Sörbom (Eds.), Structural equation models: Present and future. A Festschrift in honor of Karl Jöreskog (pp. 139–168), Chicago: Scientific Software.

Brown, T. A. (2015). Confirmatory factor analysis for applied research. The Guilford Press: New York London. Byrne, B. M. (1998). Structural equation modelling with LISREL, PRELIS, and SIMPLIS: basic concepts, applications, and programming. Mahwah, NJ: L. Erlbaum.

Canivez, G. L. (2016). Bifactor modeling in construct validation of multifactored tests: Implications for multidimensionality and test interpretation. In K. Schweizer & C.

DiStefano (Eds.), Principles and methods of test construction: Standards and recent advancements (pp. 247–271). Gottingen, Germany: Hogrefe.

Cucina, J. & Byle, K. (2017). The bifactor model fits better than the higher-order model in more than 90% of comparisons for mental abilities test batteries. Journal of Intelligence, 5(3), 27.

Çakir, M. A. (2004). Mesleki karar envanterinin geliştirilmesi [The development of career decision inventory]. Ankara Üniversitesi Eğitim Bilimleri Fakültesi Dergisi, 37(2), 1-14.

Flores-Kanter, P. E., Dominguez-Lara, S., Trógolo, M. A., & Medrano, L. A. (2018). Best practices in the use of bifactor models: Conceptual grounds, fit indices and complementary indicators. Revista Evaluar, 18(3), 44-48. Retrieved March 15, 2019 from https://revistas.unc.edu.ar/index.php/revaluar

Gignac, G. E. (2008). Higher-order models versus direct hierarchical models: g as superordinate or breadth factor? Psychology Science, 50(1), 21–43.

Gignac, G.E. (2016). The higher-order model imposes a proportionality constraint: That is why the bifactor model tends to fit better. Intelligence, 55, 57–68.

Gignac, G.E. & Watkins, M.W. (2013). Bifactor modeling and the estimation of model-based reliability in the WAIS-IV. Multivariate Behavioral Research, 48(5), 639–662.

Hair, J.F., Black, W. C., Barry, J.B., & Anderson, R.E. (2014). Multivariate data analysis. (Seventh edition, Pearson new international edition). Harlow: Pearson Education Limited.

Hooper, D., Coughlan, J., & Mullen, M. (2008). Structural equation modeling: Guidelines for determining model fit. Electronic Journal of Business Research Methods, 6(1), 53-60.

Hu, L.T. & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. http:l/doi.org/10.1080/10705519909540118

Jackson, D. L. (2001). Sample size and number of parameter estimates in maximum likelihood confirmatory factor analysis: A Monte Carlo investigation. Structural Equation Modeling, 8(2), 205–223.

Jöreskog, K. & Sörbom, D. (1993). LISREL 8: Structural equation modeling with the SIMPLIS command language. Chicago, IL: Scientific Software International Inc.Kline, B.R. (2005, 2015). Principles and practice of structural modeling. New York-London: The Guilford Press.

Meydan, C. H. & Şeşen, H. (2015). Yapısal eşitlik modellemesi AMOS uygulamaları. Ankara: Seçkin Yayıncılık

Moshagen, M. & Musch, J. (2014). Sample size requirements of the robust weighted least squares estimator. Methodology, 10(2), 60–70.

Murray, A. L. & Johnson, W. (2013). The limitations of model fit in comparing the bi-factor versus higher-order models of human cognitive ability structure. Intelligence, 41(5), 407–422.

Worthington, R. L., & Whittaker, T. A. (2006). Scale development research: A content analysis and recommendations for best practices. The Counseling Psychologist, 34(6), 806-838.

Reise, S. P. (2012). The rediscovery of bifactor measurement models. Multivariate Behavioral Research, 47(5), 667–696. http://dx.doi.org/10 .1080/00273171.2012.715555

Reise, S. P., Kim, K. H., Mansolf, M., & Widaman, K. F. (2016). Is the bifactor model a better model or is it just better at modeling implausible responses? Application of iteratively reweighted least squares to the Rosenberg Self- Esteem Scale. Multivariate Behavioral Research, 51(6):818-838.

Rodriguez, A., Reise, S. P., & Haviland, M. G. (2016). Applying bifactor statistical indices in the eval¬uation of psychological measures. Journal of Personality Assessment, 98(3), 223-237. doi: 10.1080/00223891.2015.1089249

Schermelleh-Engel, K., Moosbrugger, H., & Müller, H., (2003). Evaluating the fit of structural equation models: Test of significance and descriptive goodness-of-fit measures. Methods of Psychological Research - Online, 8(2), 23-74.

Sümer, N. (2000). Yapısal eşitlik modelleri: Temel kavramlar ve örnek uygulamalar. Türk Psikoloji Yazıları, 3(6), 49-74.

Şimşek, Ö.F. (2007). Yapısal eşitlik modellemesine giriş: Temel ilkeler ve LISREL uygulamaları. Ankara: Ekinoks Yayınları.

Tabachnick, B.G. & Fidell, L.S. (2001). Using multivariate statistics. New York: Allyn &Bacon Inc.

Watkins, M. W. (2010). Structure of the Wechsler Intelligence Scale for Children-fourth edition among a national sample of referred students. Psychological Assessment, 22(4), 782–787.

47563 12934

Arşiv
Sayıdaki Diğer Makaleler

SOSYAL BİLGİLER ÖĞRETMENLERİ PERSPEKTİFİNDEN MÜLTECİ ÖĞRENCİLER

Nihal BALOĞLU UĞURLU, Melek AKDOVAN

İLKOKUL ÖĞRENCİLERİNİN ÇEVRE SORUNLARI İLE İLGİLİ KAVRAMLARA YÖNELİK ALGILARININ BELİRLENMESİ

Elif ATABEK-YİĞİT, Fatime BALKAN-KIYICI, Melike YAVUZ-TOPALOĞLU

KİŞİLERARASI DUYGU DÜZENLEME ÖLÇEĞİ’NİN TÜRKÇE'YE UYARLANMASI

Vildan SARUHAN, Münevver BAŞMAN, Halil EKŞİ

SINIF ÖĞRETMENLERİNİN HAYAT BİLGİSİ ÖĞRETİMİ TUTUMLARININ UYGULAMALARI İLE KARŞILAŞTIRILMASI

Ergün YURTBAKAN, Taner ALTUN

OKUL ÖNCESİ DÖNEM ÇOCUKLARININ KİŞİLER ARASI PROBLEM ÇÖZME VE SOSYAL BECERİLERİ İLE AKRAN İLİŞKİLERİNİN DEĞERLENDİRİLMESİ

Çağlayan DİNÇER, Tuğba BAŞ, Nergiz TEKE, Ebru AYDIN, Sinem İPEK, İlkay GÖKTAŞ

ZİHİN ENGELLİ ÖĞRENCİLERE ÇIKARMA İŞLEMİ ÖĞRETİMİNDE SABİT BEKLEME SÜRELİ ÖĞRETİMLE SUNULAN NOKTA BELİRLEME TEKNİĞİNİN ETKİLİLİĞİ

Tayyibe BADIR POLAT, Ahmet YIKMIŞ

İLKOKUL VE ORTAOKUL ÖĞRETMENLERİNİN ÖRGÜTSEL DIŞLANMA VE ÖRGÜTSEL UYUM ALGILARI ARASINDAKİ İLİŞKİ

Ömer YILMAZ, Nuri AKGÜN

OKUL ÖNCESİ BİRİNCİ SINIF ÖĞRETMEN ADAYLARININ ÖĞRETMENLİK MESLEĞİNE İLİŞKİN METAFORLARI

Duygu KOZAN, Elvan ŞAHİN ZETEROĞLU

BİR ÇEVRİMİÇİ ÖĞRENME ORTAMININ KULLANILMASI: BAŞLICA STRATEJİLER VE OLANAK SAĞLAYICILAR

Levent DURDU, M. Yaşar ÖZDEN

DÖRDÜNCÜ SINIF ÖĞRENCİLERİ VE SINIF ÖĞRETMENLERİNİN ÖĞRENME STRATEJİLERİYLE İLGİLİ GÖRÜŞLERİ ARASINDAKİ İLİŞKİ

Cemal BIYIKLI