Mısırda Çiçeklenmenin Gün ve Termal Süreye Göre Genetik Analizi

Bu çalışmanın amaçları, mısırda çiçeklenme özelliklerine etki eden gen tipinin incelenmesi ve ilerde yapılacak ıslah çalışmalarında kullanıma uygun olan aileler tespit edilmesidir. Çalışmada materyal olarak beş farklı aileye ait altı farklı nesil (P1, P2, F1, F2, BcP1F1, BcP2F1) kullanılmıştır. Bu materyal 2011 ve 2012 yılında oluşturulmuş ve 2013 yılında değerlendirme denemesine alınmıştır. Dört çiçeklenme özelliği (tepe püskülü çıkarma, polen dökme, koçan püskülü çıkarma ve koçan püskülü çıkarma polen dökme aralığı) gün ve termal süre bazlı olarak ele alınmıştır. İncelenen özelliklerde gene etki tipi, dar anlamda kalıtım derecesi, etkili gen sayısı ve seleksiyona karşı ilerleme değeri Nesil Ortalama Analizi (NOA) metodu ile belirlenmiştir. İncelenen özellikler bakımından kullanılan aileler ve bu ailelere ait nesiller arasında dikkate değer bir değişim saptanmıştır. Çalışma sonuçları incelenen çiçeklenme özellikleri üzerine az sayıda genin etkili olduğunu göstermiştir. Çiçeklenme özelliklerinin çoğunda eklemeli gen etkilerinin rol oynadığı bulunurken yalnızca iki ailede dominans ve epistatik interaksiyonlar önemli bulunmuştur. Gen etkilerinin önemliliği bakımından gün sayısı ve termal sure hesaplamaları arasında benzer sonuçlar elde edilmiş, fakat kalıtım derecesi tahminleri farklılık göstermiştir. Bazı ailelerin (IHOxMo17, IHPxHya, Mo17xIHO) çiçeklenme özellikleri için seleksiyon potansiyeline sahip olduğu belirlenmiştir.

Genetic Analysis of Flowering in Maize based on Calendar and Thermal Time

The objectives of this study were to investigate the genetic effects on flowering traits in maize and to determine the suitable families for potential use in the future breeding studies. Six generations (P1, P2, F1, F2, BcP1F1, BcP2F1) of five different maize families were used as plant material in this study. These materials were generated in the years of 2011 and 2012, than evaluated in 2013. Four flowering traits (days to tasseling, days to pollen shading, days to silking and anthesis silking interval) were investigated. Type of gene action, narrow heritability values, effective gene number and genetic gain from selection for investigated traits were determined by the Generation Mean Analysis method. A considerable variation for the evaluated traits was found among the families and their generations. The results of the study showed that few genes had effect on the evaluated flowering traits. Additive gene action was preponderance for most of the flowering traits, while dominance and epistatic interactions were significant just in two families. In terms of the significance of gene effects, the results were similar from both calendar and thermal time calculations, but not for the heritability estimations. Some of the families (IHOxMo17, IHPxHya, Mo17xIHO) showed potential for effective selection for flowering traits.

___

  • Ahmad A, Saleem M (2003). Combining ability analysis in Zea mays L. Int. J. Agri. Biol. 5: 239-244.
  • Atanaw A, Wali MC, Salimath PM, Jagadeesha RC (2006). Combining ability, heterosis and per se performance in maize maturity components. Karnataka J Agric Sci. 19: 268-271.
  • Baker JT, Reddy VR (2001). Temperature Effects on Phenological Development and Yield of Muskmelon. Annals of Botany 87: 605-613.
  • Dawod KM, Al-Falahy MAH, Mohammad AS (2012). Genetic Variations and Gene Effect Controlling Grain Yield and Some of Its Components in Maize. Journal of Agricultural Science and Technology B 2: 814-823.
  • Foolad MR, Lin GY (2001). Genetic analysis of cold tolerance during vegetative growth in tomato, Lycopersicon esculentum Mill. Euphytica 122:105-11.
  • Frei OM (2000). Changes in yield physiology of corn as a result of breeding in northern Europe. Maydica 45: 173-183.
  • Gallais A, Rives M (1993). Detection, number and effects of QTLs for a complex character. Agronomie 13: 723-738.
  • Gamble EE (1962). Gene effects in corn (Zea mays L.) I. Separation and relative importance of gene effects for yield. Can. J Plant Sci. 42: 339–348.
  • Giesbrecht J (1960). The inheritance of maturity in maize. Can. J. Agr. Sci. 40: 190-199.
  • Gonzalez AM, Yuste-Lisbona FJ, Lores M, De Ron AM, Lozano R, Santalla M (2014). Dissecting the genetic basis of popping ability in nun˜a bean, an ancient cultivar of common bean. Euphytica 196: 349-363.
  • Gusmini G, Whener TC, Donaghy SB (2007). SASQuant: A SAS Software Program to Estimate Genetic Effects and Heritabilities of Quantitative Traits in Populations Consisting of 6 Related Generations. Journal of Heredity 98: 345-350.
  • Hayman BI (1958). The separation of epistatic from additive and dominance variation in generation means. Heredity 12: 371–390.
  • Hefiny M (2010). Genetic control of flowering traits, yield and its components in maize (Zea mays L.) at different sowing dates. Afr J Crop Sci. 2: 236-249.
  • Hema D, Soonkwon K, Mondeil F, Tiotoure BB, Tapsoba A, Kim SK (2001). Anthesis silking interval in maize: importance in breeding for drought tolerance. Chaiers Agriculture 10: 255-260.
  • Iqbal M, Khan K, Sher H, Rahman H (2011). Genotypic and phenotypic relationship between physiological and grain yield related traits in our maize (Zea mays L.) crosses of subtropical climate. J Sci Res Essays 6: 2864-2872.
  • Irshad ul Haq M, Kamal N, Khanum S, Siddique M, Arshadullah M (2014). Generation Mean Analysis for Flowering Characteristics in Maize (Zea mays L.). Persian Gulf Crop Protection 3: 18-24.
  • Kearsey MJ, Pooni HS (1996). The genetical analysis of quantitative traits. 1st edition. Chapman&Hall, London,381 pp.
  • Kumar R, Wehner T (2013). Quantitative analysis of generations for intheriance of fruit yield in watermelon. HortScience 48: 844-847.
  • Lima JL, Souza JC, Machado JC, Ramalho MAP (2008). Controle genético da exigência térmi térmica para o início do florescimento em milho. Bragantia 67: 127-131.
  • Lopes UV, Galvao JD, Cruz CD (1995). Intheriance of flowering time in maize, I. Diallel analysis. Pesq. Agropec. Brasilia 30: 1267-1271.
  • Mather K, Jinks JL (1977). Introduction to biometrical genetics. Ithaca : Cornell University Press, p.382.
  • Miller P, Lanier W, Brandt S (2001) Using Growing Degree Days to Predict Plant Stages. Montana State University-Bozeman, Bozeman, MT 59717; (406) 994-2721.
  • Noor M, Shahwar D, Rahman H, Ullah H, Ali F, Iqbal M, Shah IA, Ullah I (2013). Change in heritability estimates due to half-sib family selection in the maize variety Pahari. Genet. Mol. Res. 12: 1872-1881.
  • Piepho HP, Möhring J (2010). Generation Means Analysis Using Mixed Models. Crop Sci. 50: 1674-1680.
  • Robinson HF, Comstock RE, Harvey PH (1949). Estimates of heritability and the degree of dominance in corn. Agronomy Journal 41: 353–359.
  • Rood SB, Major DJ (1980). Diallel analysis of Flowering-time in Corn (Zea mays) using a Corn Heat Unit Transformation. Canadian Journal of Genetics and Cytology 22: 633-640.
  • SAS Institute, 1999. SAS V8 User Manual. Cary NC.
  • Sher H, Iqbal M, Khan K, Yasir Y, Rahman H (2012). Genetic analysis of maturity and flowering characteristics in maize (Zea mays L.). Asian Pacific Journal of Tropical Biomedicine 2: 621-626.
  • Stewart DW, Dwyer LM, Carrigan LL (1998). Phenological Temperature Response of Maize. Agronomy Journal 90: 73-79.
  • Troyer AF, (1983) Breeding corn for heat arid drought tolerance. Proc. Com. Sorghum Res. Conf. 38: 128-140.
  • Xie H, Ding D, Cui Z, Wu X, Hu Y, Liu Z, Li Y, Tang J (2010). Genetic analysis of the related traits of flowering and silk for hybrid seed production in maize. Genes & Genomics 32: 55-61.
Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi-Cover
  • ISSN: 1308-7576
  • Başlangıç: 1991
  • Yayıncı: Yüzüncü Yıl Üniversitesi Ziraat Fakültesi
Sayıdaki Diğer Makaleler

Fosfat Çözücü Bakteri Aşılamalarının Sera Domates Yetiştiriciliğinde Bitki Gelişimi, Verim ve Meyve Kalitesi Üzerine Etkileri

Gölgen ÖZTEKİN, Yüksel TÜZEL, Yüksel TÜZEL, Mehmet ECE, Mehmet ECE

Fosforlu Gübrelemenin Yaygın Fiğin (Vicia sativa L.) Ot Verimi ve Kalitesi Üzerine Etkileri

Fatma YILDIZ, Mevlüt Türk

Pamuk Bitkisinin F1 Döl Kuşağında İlk El Kütlü Pamuk Oranı Özelliğinin Genetik Analizi

Remzi EKİNCİ, Sema BAŞBAĞ, Oktay GENÇER

Farklı Tür Sütlerinden Üretilen Van Otlu Peynirlerinde Olgunlaşma Boyunca Meydana Gelen Değişiklikler: II. Mikrobiyolojik Değişiklikler, Lipoliz ve Serbest Yağ Asitleri

Elvan Ocak, Yusuf Tunçtürk, Issa Javidipour, Şenol Köse

Farklı Anaçlar Üzerine Aşılı 0900 Ziraat Kiraz Çeşidinde Su Stresinin Bazı Vejetatif Gelişim Parametrelerine Etkisi

Cenk KÜÇÜKYUMUK, Hasan Sarısu, Halit YILDIZ, Emel KAÇAL, Hakkı KOÇAL

Otlanan ve Korunan Meralarda Ham Protein İçeriği İle Diğer Kalite Faktörleri Arasındaki İlişkilerin Korelasyon ve Path Analizleri İle Belirlenmesi

Mevlüt Türk, Sebahattin ALBAYRAK, Yalçın BOZKURT

Genetic Analysis of Flowering in Maize based on Calendar and Thermal Time

Fatih KAHRIMAN, Cem Ömer EGESEL, Ahmet DEMİR, Rüstem CEBECİ, Sara BAYRAKTAR

Hakkâri-Çukurca Yöresi Topraklarının Verimlilik Durumlarının Belirlenmesi

Hatice Demirekin, İbrahim ERDAL

Determination of the Relationships between Crude Protein Content and Other Forage Quality Parameters in Grazed and Nongrazed Pastures by Correlation and Path Analysis

Mevlüt TÜRK, Sebahattin ALBAYRAK, Yalçın BOZKURT

Araştırma Makalesi/Research Article (Original Paper) Stimulation Effect of AgNO3 and CoCl2 as Ethylene Inhibitors on in- Vitro Organogenesis of Sunflower (Helianthus annuus L.)

Fahimeh MIRZAL, Ebrahim Dorani ULIAIE, Ali Bandeh HAGH