Determination of Optimum Gamma Ray Irradiation Doses for Hulless Barley (Hordeum vulgare var. nudum L. Hook. f.) Genotypes

Determination of Optimum Gamma Ray Irradiation Doses for Hulless Barley (Hordeum vulgare var. nudum L. Hook. f.) Genotypes

The limited germplasm resources of hulless barley restrict the breeding of hulless barley with improved traits. Mutation techniques are an effective tool for generating variation for plant breeding studies. This study aimed to evaluate the impact of gamma-ray at different doses on certain seedling properties of M1 plants of two hulless barley genotypes, as well as determine the effective dose (ED50). The seeds of two hulless two-row barley genotypes, cv. Yalin and hulless barley line YAA7050-14, were irradiated with 100, 150, 200, 250, and 300 gray Gamma-rays delivered by a Cobalt 60 source along with non-irradiated control samples. Gamma-ray irradiation affects the seedling properties of M1 plants of both hulless barley genotypes significantly. The significant effect varied based on the doses, traits, and genotypes. While lower doses were found statistically identical to the control in the majority of qualities in the M1 generation, 250-300 gray gamma ray doses caused statistically significant decreases in the majority of characteristics studied in both genotypes. The effective doses (ED50) for hulless barley genotypes were determined by plotting growth reduction values of seedling lengths, then the polynomial regression equations were calculated for each genotype. It was determined that 50% growth reduction in shoot length was reached at 214.1 Gy and 253.4 Gy for cv. Yalin and line YAA7050-14, respectively.

___

  • Ahloowalia, B., Maluszynski, M. & Nichterlein, K. (2004). Global impact of mutation-derived varieties. Euphytica, 135, 187-204.
  • Ahumada-Flores, S., Briceño-Zamora, M., García-Montoya, J., López-Cázarez, C., Pereo-Galvez, A., Parra-Cota, F. & de Los Santos-Villalobos, S. (2020). Gamma radiosensitivity study on wheat (Triticum turgidum ssp. durum). Open Agriculture, 5(1), 558-562. https://doi.org/10.1515/opag-2020-0057
  • Alghamdi, S.S., Migdadi, H.M., Al-fifi, S.A. & Ammar, M.H. (2010). Evaluation of critical dose for mutagenic treatments of barley varieties with N-nitroso-N-methyl urea (NMU). Environ. We International Journal Science and Technology, 5, 13-25.
  • Başer, İ., Korkut, K.Z. & Bilgin, O. (2005). Effects on variations in M1 generation of durum wheat (T. durum Thell) by induced mutagen. Journal of Tekirdag Agricultural Faculty, 2(1) , 60-72.
  • Beyaz, R., Telci Kahramanogullari, C., Yildiz, C., Darcin, E.S. & Yildiz, M. (2016). The effect of gamma radiation on seed germination and seedling growth of Lathyrus chrysanthus Boiss. under in vitro conditions. Journal of Environmental Radioactivity, 162-163, 129-133.
  • Bitarishvili, S.V., Volkova, P. Y., & Geras’kin, S. A. (2018). γ-Irradiation of barley seeds and its effect on the phytohormonal status of seedlings. Russian Journal of Plant Physiology, 65(3), 446-454.
  • Borzouei, A, Kafi, M., Khazaei, H., Naseriyan, B. & Majdabadi, A. (2010). Effects of gamma radiation on germination and physiological aspects of wheat (Triticum aestivum L.) seedlings. Pakistan Journal of Botany., 42(4), 2281-2290.
  • Chaudhary, J., Deshmukh, R. & Sonah, H. (2019). Mutagenesis approaches and their role in crop improvement. Plants, 8(11), 467. doi:10.3390/plants8110467
  • Çiftçi, C.Y. & Şenay, A. (2005). Effect of seperate and combined treatments of different doses of gamma rays and EMS on durum wheat (Tritium durum Desf.) in M1 generations. Journal of Central Research Institute for Field Crops, 14(1-2), 41-49.
  • Dickin, E., Steele, K., Edwards-Jones, G., & Wright, D. (2012). Agronomic diversity of naked barley (Hordeum vulgare L.): a potential resource for breeding new food barley for Europe. Euphytica, 184, 85-99.
  • Du, F., Guan, C., & Jiao, Y. (2018). Molecular mechanisms of leaf morphogenesis. Molecular Plant., 11(9), 1117-1134. doi: 10.1016/j.molp.2018.06.006
  • Duan, R., Xiong, H., Wang, A. & Chen, G. (2015). Molecular mechanisms underlying hull-caryopsis adhesion/separation revealed by comparative transcriptomic analysis of covered/naked barley (Hordeum vulgare L.). International Journal of Molecular Sciences, 16, 14181-14193.
  • Dyulgerova, B. & Dyulgerov, N. (2020). Evaluation of hulless mutants of winter barley. Agriculturae Conspectus Scientificus, 85(3), 203-209.
  • Eroğlu, Y., Eroğlu, H.E. & İlbaş, A.İ. (2007). Gamma ray reduces mitotic index in embryonic roots of Hordeum vulgare L. Advances in Biological Research, 1(1-2), 26-28.
  • FAO/IAEA. (2018). Manual on Mutation Breeding - Third edition. Spencer-Lopes, M.M., Forster, B.P. & Jankuloski, L. (Eds.), Food and Agriculture Organization of the United Nations. Rome, Italy. 301 pp.
  • FAOSTAT, (2022). Crops and livestock products. https://www.fao.org/faostat/en/#data/QCL. Access date: 06.02.2023
  • Forster, B.P. & Shu, Q.Y. (2012). Plant mutagenesis in crop improvement: Basic terms and applications. In Shu, Q.Y., Forster, B.P. & Nakagawa, H. (Eds.), Plant mutation breeding and biotechnology (pp. 9-20). Food and Agriculture Organization Rome.
  • Franckowiack, J. & Konishi, T. (1997). Naked caryopsis. Barley Genetic Newsletter, 26, 51-52.
  • Freund, R.J., Wilson, W.J., & Sa, P. (2006). Regression Analysis, Statistical Modeling of a Response Variable. (Second Edition), Elsevier.
  • Geçit, H.H. (2016). Serin İklim Tahılları (Buğday, Arpa, Yulaf, Çavdar, Triticale) 1. Baskı, (In Turkish) Ankara Üniversitesi Ziraat Fakültesi Yayınları, Yayın No :1640, 822, Ankara.
  • Geras’kin, S., Churyukin, R. & Volkova, P. (2017). Radiation exposure of barley seeds can modify the early stages of plants’ development. Journal of Environmental Radioactivity, 177, 71-83.
  • Gorbatova, I.V., Kazakova, E.A., Podlutskii, M.S., Pishenin, I.A., Bondarenko, V.S., Dontsova, A.A., Dontsov, D.P., Snegirev, A.S., Makarenko, E.S., Bitarishvili, S.V., Lychenkova, M.A., Chizh, T.V. & Volkova, P.Y. (2020). Studying gene expression in irradiated barley cultivars: PM19L-like and CML31-like expression as possible determinants of radiation hormesis effect. Agronomy, 10(11), 1837. https://doi.org/10.3390/agronomy10111837
  • Grover, S. & Khan, A.S. (2014). Effect of ionizing radiation on some characteristics of seeds of wheat. International Journal of Scientific & Technology Research. 3(4),32-39.
  • Hong, M.J., Kim, D.Y., Jo, Y.D., Choi, H.-I., Ahn, J.-W., Kwon, S.-J., Kim, S.H., Seo, Y.W., & Kim, J.-B. (2022). Biological effect of gamma rays according to exposure time on germination and plant growth in wheat. Applied Sciences, 12, 3208. https://doi.org/10.3390/app12063208
  • Hussien, A., Tavakol, E., Horner, D.S., Muñoz-Amatriaín, M., Muehlbauer, G.J. & Rossini, L. (2014). Genetics of tillering in rice and barley. The Plant Genome, 7(1), 1-20.
  • İlbaş, A.İ, Eroğlu,Y. & Eroğlu H.E. (2006). Effects of dosages and application periods of EDTA on morphological and cytogenetic characters of barley (Hordeum vulgare L.) seedlings. Turkish Journal of Biology, 30(2), 59 - 63.
  • Jalal, A., Oliveira, J.J.C., Ribeiro, J.S., Fernandes, G.C., Mariano, G.G., Trindade, V.D.R. & Reis, A.R. (2021). Hormesis in plants: Physiological and biochemical responses. Ecotoxicology and Environmental Safety, 207(111225).
  • Khah, M.A. & Verma, R.C. (2015). Assessment of the effects of gamma radiations on various morphological and agronomic traits of common wheat (Triticum aestivum L.) var. WH-147, European Journal of Experimental Biology, 5(7), 6-11.
  • Kiong, P., Ling, A., Lai, A.G., Hussein, S. & Harun, A.R. (2008). Physiological responses of Orthosiphon stamineus plantles to gamma irradiation. American-Eurasian Journal of Sustainable Agriculture, 2(2), 135-149.
  • Kodym, A., Afza, R., Forster, B.P., Ukai, Y. & Nakagawa, H. (2012). Methodology for physical and chemical mutagenic treatments. In Shu, Q.Y., Forster, B.F., & Nakagawa, H. (Eds.), Plant mutation breeding and biotechnology (pp. 169–180). CABI, FAO, Oxfordshire, UK.
  • Małkowski, E., Sitko, K., Szopiński, M., Gieroń, Ż., Pogrzeba, M., Kalaji, H.M., & Zieleźnik-Rusinowska, P. (2020). Hormesis in plants: The role of oxidative stress, auxins and photosynthesis in corn treated with Cd or Pb. International Journal of Molecular Sciences, 21(6):2099.
  • Maluszynski, M., Szarejko, I., Bhatia, R., Nichterlein, K. & Lagoda, P.J.L. (2009) Mutation techniques. In Guimares, E., Ceccarelli, S., Weltzein, E. & Rajendran, P.G. (Eds.), Plant breeding book (pp. 159-194). FAO, Rome.
  • Marzec, M. & Alqudah, A.M. (2018). Key hormonal components regulate agronomically important traits in barley. Int. J. Mol. Sci., 19(795), 1-12. doi: 10.3390/ijms19030795
  • Meints, B., Vallejos, C., & Hayes, P. (2021). Multi-Use Naked Barley: A New Frontier. Journal of Cereal Science, 102(103370). https://doi.org/10.1016/j.jcs.2021.103370
  • Mok, D.W. & Mok, M.C. 2001. Cytokinin metabolism and action. Annual Review of Plant Physiology and Plant Molecular Biology, 52(1), 89-118.
  • Montgomery D.C. (2013). Design and Analysis of Experiments.(Eighth edition). John Wiley & Sons, Inc.
  • Navid, S., Soufizadeh, S., Jahansuz, M. & Eskandari, A. (2021). Gamma radiation influence on germination characteristics of barley. DYSONA-Applied Science, 2(1), 8-12.
  • Nazarenko, M.M. & Lykholat, T.Y. (2020). Variability at winter wheat varieties first generation which obtained mutagen action. Ecology and Noospherology, 31(2), 77-81.
  • Olgun, M,, Ayter, N.G., Kutlu, İ. & Budak Başçiftçi, Z. (2012). The effects of different gamma-ray doses on seedling growth of bread wheats. Süleyman Demirel University Journal of Faculty of Agriculture, 7(2), 73-80.
  • Oney-Birol, S. & Balkan, A. (2019). Detection of cytogenetic and genotoxic effects of gamma radiation on M1 generation of three varieties of Triticum aestivum L. Pakistan Journal of Botany, 51, 887-894.
  • Rozman, L. (2015). The effect of gamma radiation on seed germination of barley (Hordeum vulgare L.). Acta Agriculturae Slovenica, 103(2), 307-311.
  • Sarduie-Nasab, S., Sharifi-Sirchi, G.R. & Torabi-Sirchi, M.H. (2010). Assessment of dissimilar gamma irradiations on barley (Hordeum vulgare spp.) Journal of Plant Breeding and Crop Science, 2(4), 59-63.
  • Shaveta, H. K. & Simarjit, K. (2019). Hulless barley: A new era of research for food purposes. Journal of Cereal Research, 11(2): 114-124
  • Singh, B., Ahuja, S., Singhal, R.K. & Venu Babu, P. (2013). Effect of gamma radiation on wheat plant growth due to impact on gas exchange characteristics and mineral nutrient uptake and utilization. Journal of Radioanalytical and Nuclear Chemistry, 298, 249-257.
  • Stoilov, L., Georgieva, M., Manova, V., Liu, L., & Gecheff, K. (2012). Karyotype reconstruction modulates the sensitivity of barley genome to radiation-induced DNA and chromosomal damage. Mutagenesis, 28(2), 153-160.
  • Suprasanna, P., Mirajkar, S.J. & Bhagwat, S.G. (2015). Induced mutations and crop improvement. In Bahadur, B., Venkat Rajam, M., Sahijram, L. & Krishnamurthy K. (Eds.), Plant Biology and Biotechnology (pp. 593-616), Springer, New Delhi.
  • Ullrich, S.E. (2011). Significance, adaptation, production, and trade of barley. In Ullrich, S.E (Ed.), Barley (pp. 3-13), Blackwell Publishing Ltd., Chichester, UK.
  • Volkova, P.Y., Duarte, G.T., Soubigou‐Taconnat, L., Kazakova, E.A., Pateyron, S., Bondarenko, V. S., Bitarishvili, S.V., Makarenko, E.S., Churyukin, R.S., Lychenkova, M.A., Gorbatova, I.V., Meyer, C. & Geras’kin, S.A. (2019). Early response of barley embryos to low and high dose gamma irradiation of seeds triggers changes in the transcriptional profile and an increase in hydrogen peroxide content in seedlings. Journal of Agronomy and Crop Science, 206(2), 277-295.
  • Wang, J. & Yu, Y. (2011). Effect of gamma irradiation pretreatment on embryo structure and long-term germinating characteristics of rice seed. International Agrophysics, 25, 383-388.
  • Wang, H., Chen, W., Eggert, K., Charnikhova, T., Bouwmeester, H., Schweizer, P., Hajirezaei, M.R., Seiler, C., Sreenivasulu, N., von Wirén, N. & Kuhlmann, M. (2018). Abscisic acid influences tillering by modulation of strigolactones in barley. Journal of Experimental Botany, 69(16), 3883-3898.
  • Yamaguchi, H., Shimizu, A., Degi, K. & Morishita, T. (2008). Effects of dose and dose rate of gamma ray irradiation on mutation induction and nuclear DNA content in chrysanthemum. Breeding Science. 58 (3), 331-335
  • Ye, L., Wang, Y., Long, L., Luo, H., Shen, Q., Broughton, S.,Wu, D., Shu, X.,Dai, F., Li, C. & Zhang, G. (2019). A trypsin family protein gene controls tillering and leaf shape in barley. Plant Physiology, 181(2), 701-713. doi: 10.1104/pp.19.00717
Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi-Cover
  • ISSN: 1308-7576
  • Başlangıç: 1991
  • Yayıncı: Yüzüncü Yıl Üniversitesi Ziraat Fakültesi
Sayıdaki Diğer Makaleler

Türkiye’de Herdbook Sistemine Kayıtlı Esmer, Simental ve Siyah Alaca Sığır Irkları ile Melezlerine ait Süt Verimi Özellikleri Üzerine bir Araştırma

Onur ŞAHİN, İsa YILMAZ, Ömer AKBULUT

Bacillus megaterium'un Fusarium Türlerine Karşı Antifungal Etkinliğinin Araştırılması

Esra Nur KELEŞ KEYFOĞLU, Ayşe Feyza TUFAN DÜLGER, Emre YÖRÜK

Effects of Quince Rootstocks and Pear Cultivars on Fruit and Yield Characteristics

Tahsin KURT, Ahmet ÖZTÜRK, Zaki Ahmad FAIZI, Yakup POLAT

Characterization of Nepalese Bread Wheat Landraces Based on Morpho-Phenological and Agronomic Traits

Ajaya KARKEE, Ram Prasad MAİNALİ, Krishna Hari GHİMİRE, Pradip THAPA, Bal Krishna JOSHİ, Sudeep SUBEDİ, Jiban SHRESTHA

Phenotypic Diversity of Super Local Durian (Durio zibethinus Murr.) Varieties from South Kalimantan, Indonesia: A Case Study

Dindin Hidayatul MURSYİDİN

Evaluation of Some Sorghum (Sorghum bicolor L.) Genotypes by Principles Component Analysis

Mehmet ÖTEN, İlker İNAL, Semiha KİREMİTCİ

Profile of Secondary Metabolites in Different Part of the Butterfly Pea (Clitoria ternatea) Plant with Antioxidant Activity

Waras NURCHOLİS, Tenku Muhammad IQBAL, Sulistiyani SULISTIYANI, Novia LIWANDA

Effects of Shading and Nitrogen Fertilizer on Growth and Physiology of Gandarusa (Justicia gendarussa Burm. F.)

Syaefudin SUMINTO, Syahrul RAMADHAN, Uswatun HASANAH, Waras NURCHOLİS

Investigation of Foliar L-Glutamic Application on the Resistance to the Capacity of the SC2121 Tomato Variety (Solanum lycopersicum L.) to Long-Term Salinity Stress

Nezahat TURFAN, Özlem DÜZEL

The Pull and Push Factors of Farm Income Diversification among Fluted Pumpkin (Telfairia occidentalis Hook) Farmers in Akwa Ibom State, Southern Nigeria

Sunday AKPAN, Veronica S. NKANTA, Edet UDOH